1887

Abstract

Summary: In cell-free extracts of clones harbouring the 3.5 kb II fragment of plasmid pTC1 from CTM a catechol 2,3-dioxygenase (C230) accepting both 3-methylcatechol and 2,3-dihydroxy-biphenyl as substrates could be detected. The plasmid-encoded gene for C230 of CTM and its flanking regions were sequenced. In front of the gene a sequence resembling an promoter was identified, which led to constitutive expression of the cloned gene in TG1. The derived amino acid sequence of the C230 was compared to that of nine other enzymes, which all catalyse the extradiol cleavage of an aromatic ring. These nine sequences were from different strains, in contrast to the sequence described here, from a Gram-positive bacterium. The role of four strongly conserved histidines was examined by chemical modification of the histidyl residues of the native enzyme by diethylpyrocarbonate. For that purpose the C230 was purified to homogeneity from harbouring pSC1701. However, the enzyme lost its activity during the purification. Activity could partially be restored by treatment with Feand reducing agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-321
1994-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-321.html?itemId=/content/journal/micro/10.1099/13500872-140-2-321&mimeType=html&fmt=ahah

References

  1. Appel M, Raabe T., Lingens F. 1984; Degradation of o-toluidine by Rhodococcus rhodochrous. FEA1S Microbiol Lett 24:123–126
    [Google Scholar]
  2. Bartilson M., Shingler V. 1989; Nucleotide sequence and expression of the catechol 2,3-dioxygenase-encoding gene of phenol-catabolizing Pseudomonas CF600. Gene 85:233–238
    [Google Scholar]
  3. Benjamin R. C., Voss J. A., Kunz D. A. 1991; Nucleotide sequence of xjlE from the TOL pDKl plasmid and structural comparison with isofunctional catechol 2,3-dioxygenase genes from TOL pWWO and NAH7. J Bacteriol 173:2724–2728
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Catelani D., Colombi A. 1974; Metabolism of biphenyl. Biochem J 143:431–434
    [Google Scholar]
  6. Chatfield L. K., Williams P. A. 1986; Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. J Bacteriol 168:878–885
    [Google Scholar]
  7. Fuchs K, Schreiner A., Lingens F. 1991; Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM. J Gen Microbiol 137:2033–2039
    [Google Scholar]
  8. Furukawa K, Arimura N., Miyazaki T. 1987; Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseudoalcaligenes. J Bacteriol 169:427–429
    [Google Scholar]
  9. Ghosal D„, You l.-S., Gunsalus I. C. 1987; Nucleotide sequence and expression of gene nahH of plasmid NAH7 and homology with gene xylE of TOL pWWO. Gene 55:19–28
    [Google Scholar]
  10. Goodfellow M. 1986 Genus Rhodococcus. In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1472–1481 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Harayama S., Rekik M. 1989; Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 264:15328–15333
    [Google Scholar]
  12. Harayama S, Rekik M, Wasserfallen A., Bairoch A. 1987; Evolutionary relationships between catabolic pathways for aro-matics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWrW0 and NAH7 plasmids. Mol & Gen Genet 210:241–247
    [Google Scholar]
  13. Harayama S, Kok M., Neidle E. L. 1992; Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601
    [Google Scholar]
  14. Kabisch M., Fortnagel P. 1990a; Nucleotide sequence of metapyrocatechase I (catechol 2,3-dioxygenase I) gene mpc\ from Alcaligenes eutrophus JMP222. Nucleic Acids Res 18:3405–3406
    [Google Scholar]
  15. Kabisch M., Fortnagel P. 1990b; Nucleotide sequence of metapyrocatechase II (catechol 2,3-dioxygenase II) gene mpcW from Alcaligenes eutrophus JMP222. Nucleic Acids Res 18:5543
    [Google Scholar]
  16. Keil H, Lebens M. R., Williams P. A. 1985; TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. J Bacteriol 163:248–255
    [Google Scholar]
  17. Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M., Yano K. 1989; Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bac¬terium Pseudomonas sp. strain KKS102. J Bacterial 171:2740–2747
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Mabrouk P. A., Orville A. M., Lipscomb J. D., Solomon E. I. 1991; Variable-temperature variable-field magnetic circular di-chroism studies of the Fe(II) active site in metapyrocatechase: implications for the molecular mechanism of extradiol dioxy¬genases. J Am Chem Soc 113:4053–4061
    [Google Scholar]
  20. Mandel M., Higa A. 1970; Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162
    [Google Scholar]
  21. Miles E. W. 1977; Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol 47:431–442
    [Google Scholar]
  22. Miller J. H. 1972; Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  23. Nakai C, Kagamiyama H, Nozaki M, Nakazawa T, Inouye S, Ebina Y., Nakazawa A. 1983; Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2. J Biol Chem 258:2923–2928
    [Google Scholar]
  24. Noda Y, Nishikawa S, Shiozuka K.-l., Kadokura H, Nakajima H, Yoda K, Katayama Y, Morohoshi N, Haraguchi T., Yamasaki M. 1990; Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172:2704–2709
    [Google Scholar]
  25. Nozaki M, Ono K, Nakazawa T, Kotani S., Hayaishi O. 1968; Metapyrocatechase. II. The role of iron and sulfhydryl groups. J Biol Chem 243:2682–2690
    [Google Scholar]
  26. Ohlendorf D. H., Lipscomb J. D., Weber P. C. 1988; Structure and assembly of protocatechuate 3,4-dioxygenase. Nature 336:403–405
    [Google Scholar]
  27. Olson P. E., Qi B, Que L. Jr., Wackett L. P. 1992; Immunological demonstration of a unique 3,4-dihydrophenyl-acetate 2,3-dioxygenase in soil Arthrobacter strains. Appl Environ Microbiol 58:2820–2826
    [Google Scholar]
  28. Rast H. G., Engelhardt G., Wallndfer P. R. 1980; 2,3-Cleavage of substituted catechols in Nocardia sp. DSM 43251 (Rhodococcus rubrus). Zentralbl Bakteriol Hyg (Abt I, Orig C) 1:224–236
    [Google Scholar]
  29. Roper D. I., Cooper R. A. 1990; Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocate-chuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett 275:53–57
    [Google Scholar]
  30. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353
    [Google Scholar]
  31. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  32. Sanger F, Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  33. Schreiner A, Fuchs K, Lottspeich F, Poth H., Lingens F. 1991; Degradation of 2-methylaniline in Rhodococcus rhodochrous-. cloning and expression of two clustered catechol 2,3-dioxygenase genes from strain CTM. J Gen Microbiol 137:2041–2048
    [Google Scholar]
  34. Shine J., Dalgarno L. 1974; The S'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346
    [Google Scholar]
  35. Taira K, Hayase N, Arimura N, Yamashita S, Miyazaki T., Furukawa K. 1988; Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Ql. Biochemistry 27:3990–3996
    [Google Scholar]
  36. Taira K, Hirose J, Hayashida S., Furukawa K. 1992; Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonaspseudoalcaligenes KF707. J Biol Chem 267:4844–4853
    [Google Scholar]
  37. Tatsuno Y, Saeki Y, Nozaki M, Otsuka S., Maeda Y. 1980; Mossbauer spectra of metapyrocatechase. FEBS Lett 112:83–85
    [Google Scholar]
  38. Williams P. A., Assinder S. J., Shaw L. E. 1990; Construction of hybrid xylE genes between the two duplicate homologous genes from TOL plasmid pWW53: comparison of the kinetic properties of the gene products. J Gen Microbiol 136:1583–1589
    [Google Scholar]
  39. Worsey M. J., Franklin F. C. H., Williams P. A. 1978; Regu¬lation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. J Bacteriol 134:757–764
    [Google Scholar]
  40. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  41. Zukowski M. M., Gaffney D. F., Speck D, Kauffmann M, Findeli A, Wisecup A., Lecocq J.-P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105
    [Google Scholar]
  42. Zylstra G. J., Gibson D. T. 1989; Toluene degradation by Pseudomonas putida FI. J Biol Chem 264:14940–14946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-321
Loading
/content/journal/micro/10.1099/13500872-140-2-321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error