1887

Abstract

, a gastrointestinal pathogen of humans, was shown to exhibit a significant adaptive acid tolerance response (ATR) capable of protecting cells from severe acid at a pH of 3·5. The ATR was induced by exposure to a relatively mild pH level of 5·0 for 20 min. Adaptation required protein synthesis since treatment with chloramphenicol during adaptation to pH 5·0 prevented the development of acid tolerance. The adaptation to acid environment was found to be a non-transient phenomenon. Also, iron was not required for acid adaptation in . Two-dimensional protein analyses revealed an increased production of 28 proteins and decreased synthesis of 10 following pH shifts from 7·2 to 5·0. The mild pH treatment must act as a signal to to adapt and survive in acid environments by producing ‘protective’ proteins. The adaptation and survival of this pathogen in low pH may provide valuable information about its ability to withstand acid environments in nature and in the human gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1731
1994-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1731.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1731&mimeType=html&fmt=ahah

References

  1. Aliabadi Z., Park Y. K., Slonczewski J. L., Foster J. W. 1988; Novel regulatory loci controlling oxygen-and pH-regu Iated gene expression in Salmonella typhimurium . J Bacteriol 170:842–851
    [Google Scholar]
  2. Allen S. P., Polazzi J. O., Gierse J. K., Easton A. M. 1992; Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia cob . J Bacteriol 174:6938–6947
    [Google Scholar]
  3. Booth I.R. 1985; Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359 –387
    [Google Scholar]
  4. Buchmeier N.A., Heffron F. 1990; Induction of Salmonella stress proteins upon infection of macrophages. Science 248:730–732
    [Google Scholar]
  5. Burke V., Robinson J., Gracey M., Peterson D., Partridge K. 1984; Isolation of Aeromonas bydropbila from a metropolitan water supply: seasonal correlation with clinical isolates. Appl Environ Microbiol 48:361–366
    [Google Scholar]
  6. Cumberbatch N., Gurwith M. J., Langston C., Sack R. B., Brunton J. L. 1979; Cytotoxic enterotoxin produced by Aeromonas bydropbila'. relationship of toxigenic isolates to diarrheal disease. Infect Immun 23:829 –837
    [Google Scholar]
  7. Dunn B. E., Perez-Perez G. I., Blaser M. J. 1989; Two-dimensional gel electrophoresis and immunoblotting of Campylobacter pylori proteins. Infect Immun 57:1825–1833
    [Google Scholar]
  8. Figura N., Marri L., Verdiani S., Ceccherini C., Barberi A. 1986; Prevalence, species differentiation, and toxigcnicity of Aeromonas strains in cases of childhood gastroenteritis and in controls. J Clin Microbiol 23:595–599
    [Google Scholar]
  9. Foster J.W. 1991; Salmonella acid shock proteins arc required for the acid tolerance response. J Bacteriol 173:6896–6902
    [Google Scholar]
  10. Foster J.W. 1992; Beyond pH homeostasis: the acid tolerance response of Salmonellae. Am Soc Microbiol 58:266–267
    [Google Scholar]
  11. Foster J.W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium . J Bacteriol 172:771–778
    [Google Scholar]
  12. Gluskin I., Batash D., Shoserov D., Mor A., Kazak R., Azizi E., Boldur I. 1992; A 15-vear study of the role of Aeromonas spp. in gastroenteritis in hospitalised children. J Med Microbiol 37:315–318
    [Google Scholar]
  13. Goldstein J., Pollitt N. S., Inouye M. 1990; Major cold shock protein of Escherichia coli . Proc Natl Acad Sci USA 87:282–287
    [Google Scholar]
  14. Goodson M., Rowbury R. J. 1989a; Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol 8:211–214
    [Google Scholar]
  15. Goodson M., Rowbury R. J. 1989b; Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub-lcthal acid pH value. Lett Appl Microbiol 8:77–79
    [Google Scholar]
  16. Goodson M., Rowbury R. J. 1989c; Habituation to alkali in Escherichia coli . Lett Appl Microbiol 9:71–73
    [Google Scholar]
  17. Goodson M., Rowbury R. J. 1990; Habituation to alkali and increased u.v. resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9'0. Lett Appl Microbiol 11:123–125
    [Google Scholar]
  18. Hamilton I.R., Buckley N. D. 1991; Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immunol 6:65–71
    [Google Scholar]
  19. Hazen T. C., Fliermans C. B., Hirsch R. P., Esch G. W. 1978a; Prevalence and distribution of Aeromonas bydropbila in the United States. Appl Environ Microbiol 36:731–738
    [Google Scholar]
  20. Hazen T. C., Raker M. L., Esch G. W., Fliermans C. B. 1978b; Ultrastructure of red-sore lesions on largemouth bass (Micropterus salmoides): association of the ciliate Epistylis sp. and the bacterium Aeromonas hydrophila . J Protoyool 25:351–355
    [Google Scholar]
  21. Henry M. D., Yancey S. D., Kushner S. R. 1992; Role of the heat shock response in stability of mRNA in Escherichia coli K.-12. J Bacteriol 174:743–748
    [Google Scholar]
  22. Hird W., Diesch S. L., McKinnel R. G., Gorham E., Martin F. B., Kurtz S. W., Dubrovolny C. 1981; Aeromonas bydropbila in wild-caught frogs and tadpoles (Rana pipiens) . Minn Lab Anim Sci 31:166–169
    [Google Scholar]
  23. Janda J.M., Duffey P. S. 1988; Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev Infect Dis 10:980–997
    [Google Scholar]
  24. Jenkins D. E., Chaisson S. A., Matin A. 1990; Starvation-induced cross protection against osmotic challenge in Escherichia coll . J Bacteriol 172:2779–2781
    [Google Scholar]
  25. Jenkins D. E., Schultz J. E., Matin A. 1988; Starvation-induced cross protection against heat or H202 challenge in Escherichia coli . J Bacteriol 170:3910–3914
    [Google Scholar]
  26. Jones P., Krah R., Tafuri S. R., Wolffe A. P. 1992; DNA gyrase, CS7·4, and the cold shock response in Escherichia coli . J Bacteriol 174:5798–5802
    [Google Scholar]
  27. Kirov S. M., Rees B., Wellock R. C., Goldsmid J. M., Van Galen A. D. 1986; Virulence characteristics of Aeromonas spp. in relation to source and biotype. J Clin Microbiol 24:827–834
    [Google Scholar]
  28. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Monfort P., Baleux B. 1991; Haemolysin occurrence among Aeromonas bydropbila, Aeromonas caviae and Aeromonas sobria strains isolated from different aquatic ecosystems. Res Microbiol 142:95–102
    [Google Scholar]
  30. Mooney C., Munster D. J., Bagshaw P. F., Allardyce R. A. 1990; Helicobacter pylori acid resistance. Lancet 335:1232
    [Google Scholar]
  31. Murray P.J., Young R. A. 1992; Stress and immunological recognition in host-pathogen interactions. J Bacteriol 174:4193–4196
    [Google Scholar]
  32. Nystrom T., Neidhardt F. C. 1992; Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli . Mol Microbiol 6:3187–3198
    [Google Scholar]
  33. Siegele D.A., Kolter R. 1992; Life after log. J Bacteriol 174:345–348
    [Google Scholar]
  34. Pannekoek Y., Putten V., Jos P. M., Dankert J. 1992; Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonnorhoeae . J Bacteriol 174:6928–6937
    [Google Scholar]
  35. Pitarangsi C., Echeverria P., Whitmire R., Tirapat C., Formal S., Dammin G. J., Tingtalapong M. 1982; Enteropathogenicity of Aeromonas bydropbila and Plesiomonas shigelloides: prevalence among individuals with and without diarrhea in Thailand. Infect Immun 35:666–673
    [Google Scholar]
  36. Raja N., Goodson M, Smith D. G., Rowbury R. J. 1991; Decreased DNA damage by acid and increased repair of acid-damaged DNA in acid-habituated Escherichia coli . J Appl Bacteriol 70:507–511
    [Google Scholar]
  37. Schubert R.H.W. 1991; Aeromonads and their significance as potential pathogens in water. J Appl Bacteriol Symp Suppl 70:131S–135S
    [Google Scholar]
  38. Slonczewski J.L. 1992; pH-regulated genes in enteric bacteria. Am Soc Microbiol 58:140–144
    [Google Scholar]
  39. Spector M. P., Aliabadi Z., Gonzalez T., Foster J. W. 1986; Global control in Salmonella typhimurium. two-dimensional electrophoretic analysis of starvation-, anaerobiosis-and heat shock-inducible proteins. J Bacteriol 168:420–424
    [Google Scholar]
  40. Von Gravenitz A., Mensch A. H. 1968; The genus Aeromonas in human bacteriology. N Engl J Med 278:245–249
    [Google Scholar]
  41. Watson N., , Dunyak E. L., Slonczewski J. L., Olson E. R. 1992; Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174:530–540
    [Google Scholar]
  42. White S., Tuttle F. E., Blankenhorn D. D., Donald C., Slonczewski J. L. 1992; pH dependence and gene structure of ina A in Escherichia coli . J Bacteriol 174:1537–1543
    [Google Scholar]
  43. Willimsky G., Holger B., Gunter F., Mohamed A. M. 1992; Characterization of csp B a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174:6326–6335
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1731
Loading
/content/journal/micro/10.1099/13500872-140-7-1731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error