1887

Abstract

The locus of corresponds to an operon encoding proteins which display features characteristic of the ABC group of transporters. Sequence analysis reveals a very high level of identity to the ribose transport operon of . This hypothesis is supported by the observation that strains carrying mutagenic insertions in this operon are unable to grow on ribose as sole carbon source. Expression of this operon is directed by a single SigA-type promoter which is negatively regulated by Spo0A during the late-exponential/transition state of the growth cycle. Expression is also subject to catabolite repression and this mode of regulation is dominant to control of expression by Spo0A.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1829
1994-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1829.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1829&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.I. Basic local alignment search tool. J Mol Biol 1990; 215:403–410
    [Google Scholar]
  2. Ames G.F.-L. Bacterial periplasmic transport systems: structure, mechanism and evolution. Ann Rep Biochem 1986; 55:397–425
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol 1961; 81:741–746
    [Google Scholar]
  4. Bell A.W., Bucket S.D., Groarke J.M., Hope J.N., Kingsley D.H., Hermodson M.A. The nucleotide sequences of the rbsD, rbsA and rbsC genes of Escherichia coli K12. J Biol Chem 1986; 261:7652–7658
    [Google Scholar]
  5. Buckle S.D., Bell A.W., Mohana Rao J.K., Hermodson M.A. An analysis of the structure of the product of the rbs A gene of Escherichia coli K12. J Biol Chem 1986; 261:7659–7662
    [Google Scholar]
  6. Chibazakura T., Kawamura F., Takahashi H. Differential regulation of spoOA transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J Bacteriol 1991; 173:2625–2632
    [Google Scholar]
  7. Dodd I.B., Egan J.B. Improved detection of helix-turn-helix DNA binding motifs in protein sequences. Nucleic Acids Res 1990; 18:5019–5026
    [Google Scholar]
  8. Ferrari E., Howard S.M.H., Hoch J.A. Effect of stage 0 sporulation mutations on subtilisin expression. J Bacteriol 1986; 166:173–179
    [Google Scholar]
  9. Gilson E., Alloing G., Schmidt T., Claverys J.-P., Dudler R., Hofnung M. Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO 1988; Jl:3971–3974
    [Google Scholar]
  10. Gouy M., Gautier C., Attimonelli M., Lanave G., di Paola G. acnuc-a portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage. CABIOS 1985; 1:167–172
    [Google Scholar]
  11. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a rrmr-acting gene product homologous to the Escherichia coli lacl znBgalR repressors. Mol Microbiol 1991; 5:575–584
    [Google Scholar]
  12. Higgins C.F., Hyde S.C., Mimmack M.M., Gileadi U., Gill D.R., Gallagher M.P. Binding protein-dependent transport systems. J Bioenerg Biomembr 1990; 22:571–591
    [Google Scholar]
  13. Higgins D.G., Bleasby A.J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. CABIOS 1992; 8:189–191
    [Google Scholar]
  14. Kyte J., Doolittle R. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157:105–132
    [Google Scholar]
  15. Mathiopoulos C., Mueller J.P., Slack F.J., Murphy C.G., Patankar S., Bukusoglu G., Sonenshein A.L. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 1991; 5:1903–1913
    [Google Scholar]
  16. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. O'Reilly M., Woodson K., Dowds B.C.A., Devine K.M. The citrulline biosynthetic operon argC-E and a ribose transport operon rbs from Bacillus subtilis are negatively regulated by SpoOA. Mol Microbiol 1994; 11:87–98
    [Google Scholar]
  18. Perego M., Spiegelman G.B., Hoch J.A. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis. Mol Microbiol 1988; 2:689–699
    [Google Scholar]
  19. Perego M., Higgins C.F., Pearce S.R., Gallagher M.P., Hoch J.A. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 1991; 5:173–185
    [Google Scholar]
  20. Rudner D.Z., Le Deaux J.R., Ireton K., Grossman A.D. The spoOK locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 1991; 173:1388–1398
    [Google Scholar]
  21. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Satola S., Kirchman P.A., Moran C.P. SpoOA binds to a promoter used by sigA RNA polymerase during sporulation in Bacillus subtilis. Proc Nat Acad Sci USA 1991; 88:4533–4537
    [Google Scholar]
  23. Schaeffer P., Miller J., Aubert J. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 1965; 54:701–711
    [Google Scholar]
  24. Slack F.J., Mueller J.P., Strauch M.A., Mathiopoulos C., Sonenshein A.L. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol Microbiol 1991; 5:1915–1925
    [Google Scholar]
  25. Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 1982; 10:4731–4761
    [Google Scholar]
  26. Strauch M.A., Spiegelman G.B., Perego M., Johnson W.G., Burbulys D., Hoch J.A. The transition state regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO I 1989; 8:1615–1621
    [Google Scholar]
  27. Strauch M.A., Trach K.A., Day J., Hoch J.A. SpoOA activates and represes its own synthesis by binding at its dual promoters. Biochimie 1992; 74:619–626
    [Google Scholar]
  28. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.G., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 1973; 246:40–41
    [Google Scholar]
  29. Weickert M.J., Chambliss G.H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 1990; 87:6238–6242
    [Google Scholar]
  30. Wood H., Dawson M., Devine K.M., McConnell D.J. Characterisation of PBSX, a defective prophage of Bacillus subtilis. J Bacteriol 1990; 172:2667–2674
    [Google Scholar]
  31. Woodson K. Identification and characterisation of SpoOA controlled operons in Bacillus subtilis 1992 PhD thesis University of Dublin;
    [Google Scholar]
  32. Yamashita S., Kawamura F., Yoshikawa H., Takahashi H., Kobayashi Y., Saito H. Dissection of the expression signals of the spoOA gene of Bacillus subtilis: glucose represses sporulation specific expression. J Gen Microbiol 1989; 135:1335–1345
    [Google Scholar]
  33. York K., Kenney T.J., Satola S., Moran C.P., Poth H., Youngman P. SpoOA controls the SigA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J Bacteriol 1992; 174:2648–2658
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1829
Loading
/content/journal/micro/10.1099/13500872-140-8-1829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error