1887

Abstract

The lactate utilizing strain of 5934e was found to contain three lactate dehydrogenase (LDH) activities in sonicated cell extracts. One activity, an NAD dependent L-LDH (L-nLDH) was measured at 15-fold greater levels in extracts of cells grown to mid-exponential phase on glucose compared to cells grown to the equivalent growth stage on DL-lactate. A second nLDH activity specific for D-lactate (D-nLDH) was detected at similar levels in both lactate-grown cell extracts and glucose-grown cell extracts. The third activity, an NAD independent DLDH (D-iLDH) was very low in cells grown on glucose but was induced more than 10-fold when DL-lactate was used as the carbon source. The three LDH activities could be separated by gel filtration. Recovery of the activities was low due to the apparent instability of the enzymes at 4 °C, which was most pronounced in the case of the D-iLDH. A m for lactate of 0.5 mM was estimated for the D-iLDH and this was considerably lower than the values of 45 mM and 70 mM measured for L-nLDH and D-nLDH respectively. It is proposed that the D-iLDH may be largely responsible for the formation of pyruvate in lactate-grown cells of strain 5934e. Three other lactate utilizing strains of , HD4, 5521C1 and JW13 exhibited a similar profile of LDH activities to strain 5934e when grown on glucose and DL-lactate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-2077
1994-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-2077.html?itemId=/content/journal/micro/10.1099/13500872-140-8-2077&mimeType=html&fmt=ahah

References

  1. Baldwin R.L., Wood W.A., Emery R.S. Lactate metabolism by Peptostreptococcus elsdenii' evidence for lactyl coenzyme A dehydrase. Biochim Biophys Acta 1965; 97:202–213
    [Google Scholar]
  2. Bergmeyer H.U., Gahwehn K. D-Lactate. In Methods of Enigmatic Analysis 1974 Edited by Bergmeyer H.U. New York: Academic Press; 2nd edn 3 pp 1492–1495
    [Google Scholar]
  3. Brockman H.L., Wood W.A. D-Lactate dehydrogenase of Peptostreptococcus elsdenii. J Bacteriol 1975; 124:1454–1461
    [Google Scholar]
  4. Bryant M.P. The characteristics of strains of Selenomonas isolated from bovine rumen contents. J Bacteriol 1956; 72:162–167
    [Google Scholar]
  5. Bryant M.P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 1972; 25:1324–1328
    [Google Scholar]
  6. Bryant M.P. Selenomonas. In Bergey's Manual of Systematic Bacteriology 1984 Edited by Krieg N.R., Holt J.G. Baltimore: Williams & Wilkins; 1 pp 650–653
    [Google Scholar]
  7. Caldwell D.R., Bryant M.P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 1966; 14:794–801
    [Google Scholar]
  8. Clark B., Holms W.H. Control of the sequential utilization of glucose and fructose by Escherichia coli. J Gen Microbiol 1976; 95:191–201
    [Google Scholar]
  9. Counotte G.H.M., De Groot M., Prins R.A. Kinetic parameters of lactate dehydrogenases of some rumen bacterial species, the anaerobic ciliate lsotricha prostoma and mixed rumen microorganisms. Antonie Eeeuwenhoek 1980; 46:363–381
    [Google Scholar]
  10. Counotte G.H.M., Prins R.A., Janssen R.H.A.M., Debie M.J.A. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C]lactate in the rumen of dairy cattle. Appl Environ Microbiol 1981; 42:649–655
    [Google Scholar]
  11. Dennis D., Kaplan N.O. Lactic acid racemization in Clostridium butylicum. Biochem Z 1963; 338:485–495
    [Google Scholar]
  12. De Vries W., Van Wijck-Kapteyn W.M.C., Oosterhuis S.K.H. The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and I 'eillonella alcalescens. J Gen Microbiol 1974; 81:69–78
    [Google Scholar]
  13. Flint H.J., Bisset J. Genetic diversity in Selenomonas ruminantium isolated from the rumen. FEMS Microbiol Ecol 1990; 73:351–360
    [Google Scholar]
  14. Flint H.J., Duncan S.H., Bisset J., Stewart C.S. The isolation of tetracycline resistant strains of strictly anaerobic bacteria from the rumen. Eett Appl Microbiol 1988; 6:113–115
    [Google Scholar]
  15. Garvie E.I. Bacterial lactate dehydrogenases. Microbiol Rev 1980; 44:106–139
    [Google Scholar]
  16. Henderson C. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J Gen Microbiol 1980; 119:485–491
    [Google Scholar]
  17. Hino T., Kuroda S. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl Environ Microbiol 1993; 59:255–259
    [Google Scholar]
  18. Hishinuma F., Kanegasaki S., Takahashi H. Ruminal fermentation and sugar concentration: a model experiment with Selenomonas ruminantium. Agric Biol Chem 1968; 32:1325–1330
    [Google Scholar]
  19. Hobson P.N. Rumen bacteria. Methods Microbiol 1969; 3B:133–139
    [Google Scholar]
  20. Hochella N.J., Weinhouse S. Automated lactic acid determination in serum and tissue extracts. Anal Biochem 1965; 10:304–317
    [Google Scholar]
  21. Holzer H., Soling H.D. Bestimmung von L-lactat, l-malat, L-glutamat und athylalkohol im enzymatisch-optischen test mit hilfe des DPN-analogen 3-acetylpyridin-DPN. Biochem Z 1962; 336:201–214
    [Google Scholar]
  22. Hungate R.E. The Rumen and its Microbes 1966 New York: Academic Press;
    [Google Scholar]
  23. John A., Isaacson H.R., Bryant M.P. Isolation and characterisation of a ureolytic strain of Selenomonas ruminantium. J Dairy Sci 1974; 57:1003–1014
    [Google Scholar]
  24. Johns A.T. The mechanism of propionic acid formation by I 'eillonella gazogenes. J Gen Microbiol 1951; 5:326–336
    [Google Scholar]
  25. Joyner A.E., Baldwin R.L. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol 1966; 92:1321–1330
    [Google Scholar]
  26. Kaplan N.O., Ciotti M.M. Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide. J Biol Chem 1956; 221:823–832
    [Google Scholar]
  27. Kemp M.B. D-and L-lactate dehydrogenases of Pseudomonas aeruginosa. Biochem J 1972; 130:307–309
    [Google Scholar]
  28. Kohn L.D., Kaback H.R. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem 1973; 248:7012–7017
    [Google Scholar]
  29. Lever M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 1977; 81:21–27
    [Google Scholar]
  30. Macy J.M., Ljungdahl L.G., Gottschalk G. Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol 1978; 134:84–91
    [Google Scholar]
  31. Melville S.B., Michel T.A., Macy J.M. Involvement of D-lactate and lactic acid racemase in the metabolism of glucose by Selenomonas ruminantium. FEMS Microbiol Eett 1987; 40:289–293
    [Google Scholar]
  32. Melville S.B., Michel T.A., Macy J.M. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium. J Bacteriol 1988a; 170:5298–5304
    [Google Scholar]
  33. Melville S.B., Michel T.A., Macy J.M. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. J Bacteriol 1988b; 170:5305–5311
    [Google Scholar]
  34. Molinari R., Lara F.J.S. The lactic dehydrogenase of Propionibacterium pentosaceum. Biochem J 1960; 75:57–65
    [Google Scholar]
  35. Paynter M.J., Elsden S.R. Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism. J Gen Microbiol 1970; 61:1–7
    [Google Scholar]
  36. Richardson A.J., Calder A.G., Stewart C.S., Smith A. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 1989; 9:5–8
    [Google Scholar]
  37. Scheifinger C.C., Latham M.J., Wolin M.J. Relationships of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol 1975a; 30:916–921
    [Google Scholar]
  38. Scheifinger C.C., Linehan B., Wolin M.J. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl Microbiol 1975b; 29:480–483
    [Google Scholar]
  39. Scott H.W., Dehority B.A. Vitamin requirements of several cellulolytic rumen bacteria. J Bacteriol 1965; 89:1169–1175
    [Google Scholar]
  40. Wallace R.J. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J Gen Microbiol 1978; 107:45–52
    [Google Scholar]
  41. Wallace R.J., Brammall M.J. The role of different species of bacteria in the hydrolysis of protein in the rumen. J Gen Microbiol 1985; 131:821–832
    [Google Scholar]
  42. Wittenberger C.L. Unusual kinetic properties of a DPN-linked lactate dehydrogenase from Butyribacterium rettgeri. Biochem Biophys Rw Commun 1966; 22:729–736
    [Google Scholar]
  43. Wittenberger C.L., Haaf A.S. Isolation of NAD-independent lactate dehydrogenase from extracts of Butyribacterium rettgeri. Biochim Biophys Acta 1966; 122:393–405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-2077
Loading
/content/journal/micro/10.1099/13500872-140-8-2077
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error