1887

Abstract

The hydrolysis of soluble starch, raw starch and pullulan with recombinant glucoamylase P from was competitively inhibited by β-cyclodextrin with apparent values of 190 μM, 13 μM and 1.4 μM, respectively. Inhibition of dextran hydrolysis was partial: a maximum inhibition of 22% was achieved with a dextran concentration of 0.3 × and up to 4 mM β-cyclodextrin. Hydrolysis of short oligosaccharides was not inhibited by β-cyclodextrin at levels up to 20 mM. The enzyme bound to raw starch at pH 4.3 and 4 °C with an association constant of 3.4 × 10M. Sequence alignment studies showed raw-starch-binding consensus amino acids in the C-terminal part of glucoamylase P. Partial hydrolysis with papain resulted in degradation of deglycosylated glucoamylase P into three fragments of 53, 51 and 14 kDa, respectively, as estimated by SDS-PAGE. The amino-terminal sequences of the 51 and 53 kDa fragments were identical with that of native glucoamylase P. The amino terminus of the 14 kDa fragment (Ser-Ser-X-Gln-Val-Ser-), corresponded to the sequence starting at residue 474 of intact glucoamylase P. Kinetic measurements of truncated glucoamylase P showed changes in the values of larger polysaccharides, but no changes in values compared to the intact enzyme. It was concluded that glucoamylase P contains a catalytic core domain and a raw-starch-binding domain involved in inhibition of polysaccharide hydrolysis by β-cyclodextrin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-9-2399
1994-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/9/mic-140-9-2399.html?itemId=/content/journal/micro/10.1099/13500872-140-9-2399&mimeType=html&fmt=ahah

References

  1. Abe J., Nakajima K., Hizukuri S. 1990; Alteration of the properties of Aspergillus sp. K-27 glucoamylase on limited proteolysis with subtilisin.. Carbohydr Res 203:129–138
    [Google Scholar]
  2. Aleshin A., Golubev A., Firsov L. M., Honzatko R. B. 1992; Crystal Structure of glucoamylase from Aspergillus awamori var. X100 to 2-2 A Resolution. J Biol Chem 267:19291–19298
    [Google Scholar]
  3. Belshaw N.J., Williamson G. 1990; Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger.. FEBS Lett 269:350–353
    [Google Scholar]
  4. Belshaw N.J., Williamson G. 1991; Interaction of β-cyclodextrin with the granular starch binding domain of glucoamylase. Biochim Biophys Acta 1078:117–120
    [Google Scholar]
  5. Belshaw N.J., Williamson G. 1993; Specificity of the binding domain of glucoamylase 1. Eur J Biochem 211:717–724
    [Google Scholar]
  6. Cattlay B.J. 1979; Pullulan synthesis by Aureobasidum pullulans.. In Microbial Polysaccharides and Polysaccharases pp. 69–84 Edited by Berkeley R.C. E., Gooday G. W. , Ellwood D. C. . London: Academic Press;
    [Google Scholar]
  7. Cornish-Bowden A. 1977; An automatic method for deriving steady-state rate equations. Biochem J 165:55–59
    [Google Scholar]
  8. Dalmia B.K., Nikolov Z. L. 1991; Characterization of glucoamylase adsorption to raw starch. Enzyme Microb Technol 13:982–990
    [Google Scholar]
  9. Fagerstrom R. 1991; Subsite mapping of Hormoconis resinae glucoamylases and their inhibition by gluconolactone. J Gen Microbiol 137:1001–1008
    [Google Scholar]
  10. Fagerstrom R. 1994; Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei.. Enzyme Microb Technol 16:36–42
    [Google Scholar]
  11. Fagerstrom R., Vainio A., Suoranta K., Pakula T., Kalkkinen N., Torkkeli H. 1990; Comparison of two glucoamylases from Hormoconis resinae. J Gen Microbiol 136:913–920
    [Google Scholar]
  12. Fukuda K., Teramoto Y., Goto M., Sakamoto J., Mitsuiki S., Hayashida S. 1992; Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Biosci Biotechnol Biochem 56:556–559
    [Google Scholar]
  13. Hansen S.A. 1975; Thin-layer chromatographic method for identification of oligosaccharides in starch hydrolyzates. J Chromatogr 105:338–390
    [Google Scholar]
  14. Hayashida S., Nakahara K., Kanlayakrit W., Hara T., Teramoto Y. 1989; Characteristics and function of raw-starch-affinity site on Aspergillus awamori var. kawachi glucoamylase I molecule.. Aggie Biol Chem 53:143–149
    [Google Scholar]
  15. Hayashida S., Teramoto Y., Inoue T., Mitsuiki S. 1990; Occurrence of an affinity site apart from the active site on the raw-starch-binding but non-raw-starch-adsorbable Bacillus subtilis 65 alpha-amylase.. Appl Environ Aiicrobiol 56:2584–2586
    [Google Scholar]
  16. Joutsjoki V.V., Torkkeli T. K. 1992; Glucoamylase P gene of Hormoconis resinae. Molecular cloning, sequencing and introduction into Trichoderma reesei. FEMS Microbiol Lett 99:237–244
    [Google Scholar]
  17. Joutsjoki V., Torkkeli T., Nevalainen H. 1993; Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gam P) gene: production of a heterologous glucoamylase by Trichoderma reesei. Curr Genet 24:223–228
    [Google Scholar]
  18. Kalkkinen N., SiTilgmann C. 1988; A gas-pulsed-phase sequencer constructed from a Beckman 890D instrument by using Applied Biosystems delivery and cartridge blocks. J Protein Chem 7:242–243
    [Google Scholar]
  19. Kobayashi M., Takagi S., Matsuda K., Ichishima E. 1988; Inhibition of a-amylase and phosphorylases by cyclodextrin-dialdehyde. Agric Biol Chem 52:2703–2708
    [Google Scholar]
  20. Kraulis P. J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. 1989; Determination of the three-dimensional structure of the C-terminal domain of cellobio-hydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry—dynamical simulated annealing.. Biochemistry 28:7241–7257
    [Google Scholar]
  21. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Marshall J.J. 1973; Inhibition of pullulanase by Shardinger dextrins. FEBS Lett 37:269–273
    [Google Scholar]
  23. McCleary B.V., Anderson M. A. 1980; Hydrolysis of α-D-glucans and α-D-gluco-oligosaccharides by Cladosporium resinae glucoamylases.. Carbohydr Res 86:77–96
    [Google Scholar]
  24. Meagher M. M., Nikolov Z. L., Reilly P. J. 1989; Subsite mapping of Aspergillus niger glucoamylase I and II with malto-and isomaltooligosaccharides.. Biotechnol Bioeng 34:681–688
    [Google Scholar]
  25. Medda S., Saha B. C., Ueda S. 1982; Raw starch adsorption and elution behavior of glucoamylase I of black Aspergillus. J Fermentation Technol 60:261–264
    [Google Scholar]
  26. Melasniemi H. 1987; Effect of carbon source on production of thermostable alpha-amylase, pullulanase and a-glucosidase by Clostridium thermohydrosulfuricum. J Gen Microbiol 133:883–890
    [Google Scholar]
  27. Miranda M., Murado M. A., Sanroman A., Lema J. M. 1991; Mass transfer control of enzymatic hydrolysis of polysaccharides by glucoamvlase. Enzyme Microb Tecbnol 13:142–147
    [Google Scholar]
  28. Monma M., Yamamoto Y., Kainuma K. 1989; Subsite structure of Cblara paradoxa glucoamylase and interaction of the glucoamvlase with cyclodextrins.. Agric Biol Chem 53:1503–1508
    [Google Scholar]
  29. Rouvinen J., Bergfors T., Teeri T., Knowles J. K. C., Jones T. A. 1990; The three dimensional structure of cellobiohydrolase II from Yrichoderma reesei. Science 249:380–386
    [Google Scholar]
  30. Scopes R.K. 1974; Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277–282
    [Google Scholar]
  31. Savel'ev A.N., Sergeev V. R., Firsov L. M. 1989; Analysis of an additional substrate-binding site of glucoamylase I. The effect of cyclodextrin on glucoamylase-catalized reactions. Biokhimiya 54:1725–1731
    [Google Scholar]
  32. Stoffer B., Frandsen T. P., Busk P. K., Schneider P., Svendsen I., Svensson B. 1993; Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 292:197–202
    [Google Scholar]
  33. Svensson B., Larsen K., Gunnarson A. 1986; Characterisation of a glucoamylase G2 from Aspergillus niger. Eur J Biochem 154:497–502
    [Google Scholar]
  34. Svensson B., Jespersen H., Sierks M. R., MacGregor E. A. 1989; Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264:309–311
    [Google Scholar]
  35. Takahashi T., Kato K., Ikegami Y., Irie M. 1985; Different behavior towards raw starch of three forms of glucoamylase from Rhizopus sp.. J Biochem 98:663–671
    [Google Scholar]
  36. Thoma J.A., Koshland D. E. 1960; Competitive inhibition by substrate during enzyme action. Evidence for the induced-fit theory. J Am Chem Soc 82:3329–3333
    [Google Scholar]
  37. Ueda S., Saha B. C. 1983; Behaviour of Endomjcopsis fibuligera glucoamylase towards raw starch.. Enzyme Microb Technol 5:196–198
    [Google Scholar]
  38. Vainio A.E.I., Torkkeli H. T., Tuusa T., Aho S. A., Fagerstrom B. R., Korhola M. P. 1993; Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Curr Genet 24:38–44
    [Google Scholar]
  39. van Tilbeurgh H., Tomme P., Claeyssens M., Bhikhabhai R., Petterson G. 1986; Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. Separation of functional domains.. FEBS Lett 204:223–227
    [Google Scholar]
  40. Williamson G., Belshaw N. J., Williamson M. P. 1992; O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J 282:423–428
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-9-2399
Loading
/content/journal/micro/10.1099/13500872-140-9-2399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error