1887

Abstract

Siderophore-mediated iron uptake systems play a central role in the pathogenesis of infection for many bacterial pathogens. species are not thought to produce siderophores, yet they are able to utilize both ferrichrome and enterochelin as sources of iron. Part of an operon named ceuBCDE, encoding components of a periplasmic binding-protein-dependent transport (PBT) system for the uptake of a ferric siderophore from , was cloned directly into using a plasmid rescue technique. Phenotypic and genetic analyses of this system showed it to comprise two hydrophobic integral membrane proteins, CeuB (35-5 kDa) and CeuC (34-8 kDa), which may form the cytoplasmic membrane permease, an ATP-binding protein, CeuD (28-8 kDa), and a periplasmic substrate-binding protein, CeuE (34-5 kDa). labelling studies using [H]palmitate demonstrated that CeuE, the periplasmic binding protein, is expressed as a lipoprotein in C. , which is unusual for a Gram-negative PBT system. Mutants of C. , defective in components of the transport mechanism, were severely impaired in the ability to utilize enterochelin as an iron source suggesting that this siderophore is a substrate for the transport system. This is the first molecular characterization of a PBT system in species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-12-3181
1995-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/12/mic-141-12-3181.html?itemId=/content/journal/micro/10.1099/13500872-141-12-3181&mimeType=html&fmt=ahah

References

  1. Alloing G., Trombe M.C., Claverys J.P. 1990; The ami locus of Streptococcus pneumoniae is similar to binding-protein dependent transport operons of Gram-negative bacteria.. Mol Microbiol 4:633–644
    [Google Scholar]
  2. Ames G.F.-L., Mimura GS., Shyamala V. 1990; Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: traffic ATPases.. FEMS Microbiol Rev 75:429–446
    [Google Scholar]
  3. Baig B.H., Wachsmuth I.K., Morris G.K. 1986; Utilization of exogenous siderophores by Campylobacter species.. J Clin Microbiol 23:431–433
    [Google Scholar]
  4. Braun V., Hantke K. 1991; Genetics of bacterial iron transport.. In Handbook of Microbial Iron Chelates pp. 107–138 Edited by Winkelmann G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  5. Briat J.-F. 1992; Iron assimilation and storage in prokaryotes.. J Gen Microbiol 138:2475–2483
    [Google Scholar]
  6. Burkhardt R., Braun V. 1987; Nucleotide sequence of the fhuC and fhuD genes involved in iron(III)hydroxymate transport: domains in FhuC homologous to ATP-binding proteins.. Mol & Gen Genet 209:49–55
    [Google Scholar]
  7. Crosa J.H. 1989; Genetics and molecular biology of siderophore- mediated iron transport in bacteria.. Microbiol Ren 53:517–530
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. Dickinson J.H., Grant K.A., Park S.F. 1995; Targeted and random mutagenesis of the Campylobacter coli chromosome using integrational plasmid vectors.. Curr Microbiol 31:1–5
    [Google Scholar]
  10. Field L.H., Headley V.L., Payne S.M., Berry L.J. 1986; Influence of iron on growth, morphology, outer membrane protein composition, and synthesis of siderophores in Campylobacter jejuni. . Infect 1mmun 54:126–132
    [Google Scholar]
  11. Gilson E., Alloing G., Schmidt T., Claverys J.P., Dudler R., Hofnung M. 1988; Evidence for high affinity binding-protein- dependent transport systems in Gram-positive bacteria and in mycoplasma.. EMBO J 7:3971–3974
    [Google Scholar]
  12. Griffiths P.L., Park R.W.A. 1990; Campylobacters associated with human diarrhoeal disease.. J Appl Bacteriol 69:281–301
    [Google Scholar]
  13. von Heijne G. 1989; The structure of signal peptides from bacterial lipoproteins.. Protein Eng 2:531–534
    [Google Scholar]
  14. Higgins C.F. 1992; ABC transporters: from microorganisms to man.. Annu Ren Cell Biol 8:67–113
    [Google Scholar]
  15. Koster W.L., Actis L.A., Waldbeser L.S., Tolmasky M.E., Crosa J.H. 1991; Molecular characterization of the iron transport system mediated by the pJMl plasmid in Vibrio anguillarum 775.. J Biol Chem 266:23829–23833
    [Google Scholar]
  16. Labigne-Roussel A., Courcoux P., Tompkins L. 1988; Gene disruption as a feasible approach for mutagenesis of Campylobacter jejuni. . J Bacteriol 170:1704–1708
    [Google Scholar]
  17. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  18. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning-, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Mead D.A., Szcesna-Skoripa E., Kemper B. 1986; Singlestranded ‘ blue ’ T7 promotor plasmids: a versatile tandem promoter system for cloning and protein engineering.. Protein Eng 1:67–74
    [Google Scholar]
  20. Neilands J.B. 1981; Microbial iron compounds.. Annu Ren Biochem 50:715–731
    [Google Scholar]
  21. Park S.F., Richardson P.T. 1995; Molecular characterization of a Campylobacter jejuni lipoprotein with homology to periplasmic- siderophore-binding proteins.. J Bacteriol 177:2259–2264
    [Google Scholar]
  22. Payne S.M., Lawlor K.M. 1990; Molecular studies on iron acquisition by non-Escherichia coli species.. In The Molecular Basis of Bacterial Pathogenesis pp. 225–248 Edited by Iglewski B. H., Clark V. L. San Diego: Academic Press;
    [Google Scholar]
  23. Pei Z., Blaser M.J. 1993; PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in Gram-negative nutrient transport systems.. J Biol Chem 268:18717–18725
    [Google Scholar]
  24. Pickett C.L., Auffenberg T., Pesci E.C., Sheen V.L., Jusuf S.S.D. 1992; Iron acquisition and haemolysin production by Campylobacter jejuni. . Infect Immun 60:3872–3877
    [Google Scholar]
  25. Pitcher D.G., Saunders N.A., Owen R.J. 1989; Rapid extraction of bacterial genomic DNA with guanidinium thiocyanate.. Lett Appl Microbiol 8:151–156
    [Google Scholar]
  26. Pugsley A.P. 1993; The complete general secretory pathway in gram-negative bacteria.. Microbiol Ren 57:50–108
    [Google Scholar]
  27. Rogers H.J. 1973; Iron-binding catechols and virulence in Escherichia coli. . Infect Immun 7:445–456
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  29. Schneider R., Hantke K. 1993; Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding-protein-dependent transport system.. Mol Microbiol 8:111–121
    [Google Scholar]
  30. Shea GM., McIntosh M.A. 1991; Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic-binding-protein-dependent systems in Escherichia coli. . Mol Microbiol 5:1415–1428
    [Google Scholar]
  31. Staudenmaier H., Van Hove B., Yaraghi Z., Braun V. 1989; Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport system for iron (iii) dicitrate in Escherichia coli. . J Bacteriol 171:2626–2633
    [Google Scholar]
  32. Stojiljkovic I., Hantke K. 1994; Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia entero- colitica. . Mol Microbiol 13:719–732
    [Google Scholar]
  33. Tam R., Saier M.H. Jr 1993; Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria.. Microbiol Ren 57:320–346
    [Google Scholar]
  34. Tauxe R.V. 1992; Epidemiology of Campylobacter jejuni in the United States and other industrialised nations.. In Campylobacter jejuni: Current Status and Future Trends pp. 9–19 Edited by Nachamkin I., Blaser M. J., Tompkins L. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Walker J.E., Saraste M., Runswick M.J., Gay N.J. 1982; Distantly related sequences in the a and β-subunits of ATP synthase, myosin, kinase and other ATP-requiring enzymes and a common nucleotide binding fold.. EMBO J 1:941–945
    [Google Scholar]
  36. Walker R.I., Caldwell M.B., Lee E.C., Guerry P., Trust T.J., Ruiz-Palacios G.M. 1986; Pathophysiology of Campylobacter species.. J Bacteriol 172:949–955
    [Google Scholar]
  37. Wang Y., Taylor D.E. 1990; Natural transformation in Campylobacter species.. J Bacteriol 172:949–955
    [Google Scholar]
  38. Weinberg E.D. 1984; The development of awareness of iron withholding defense.. Perspect Biol Med 36:215–221
    [Google Scholar]
  39. Wooldridge K.G., Williams P.H. 1993; Iron uptake mechanisms of pathogenic bacteria.. FEMS Microbiol Ren 12:325–348
    [Google Scholar]
  40. Yanisch-Perron E., Vieira J., Messing J. 1985; Improved Ml3 cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-12-3181
Loading
/content/journal/micro/10.1099/13500872-141-12-3181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error