1887

Abstract

SUMMARY

The 29·71 kb chromosomal region of 168 extending from 308° to 311° contains 18 ORFs. Functions of most of these ORFs were identified and associated with cell wall metabolism. Sequences of two non-coding regions of 0·7 and 2·2 kb flanking the operon involved in the synthesis of poly(3-O---glucopyranosyl -acetylgalactosamine 1-phosphate), a minor teichoic acid, correspond to five degenerate segments of neighbouring protein-coding regions. We discuss the possibility that such grey holes are indicative of a chromosomal rearrangement which could have arisen from horizontal gene transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-329
1995-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-329.html?itemId=/content/journal/micro/10.1099/13500872-141-2-329&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis. . In Bacillus subtilis and Other GramPositive Bacteria: Biochemistry, Physiology and Molecular Genetics pp 425–461 Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290
    [Google Scholar]
  4. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic cloning vectors. I. Improved pUC polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  5. Chung C. T., Miller R. H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Rer 16:3580
    [Google Scholar]
  6. Corfe B. M., Sammons R. L., Smith D. A., Mauël C. 1994; The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the ger A spore germination operon. Microbiology 140:471–478
    [Google Scholar]
  7. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. Estrela A.-I., Pooley H. M., de Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-β-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetyl- glucosamine 4-epimerase activity. J Gen Microbiol 137:943–950
    [Google Scholar]
  10. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. 1986; Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377
    [Google Scholar]
  11. Glaser P., Kunst F., Arnaud M., Coudart M.-P., Gonzales W., Hullo M.-F., lonescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertès A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  12. Grossberger D. 1987; Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 15:6737
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  14. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon of Bacillus subtilis. . Mol Microbiol 3:1257–1268
    [Google Scholar]
  15. Karamata D., McConnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis. . J Bacteriol 111:73–79
    [Google Scholar]
  16. Karamata D., Pooley H. M., Monod M. 1987; Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168. Mol & Gen Genet 207:73–81
    [Google Scholar]
  17. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N- acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol 1381949–1961
    [Google Scholar]
  18. Margot P., Karamata D. 1992; Identification of the structural genes for N-acetylmuramoyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has not effect on growth or cell separation. Mol & Gen Genet 232:359–366
    [Google Scholar]
  19. Margot P., Mauël C., Karamata D. 1994; The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545
    [Google Scholar]
  20. Márquez M. L., Helmann J. D., Ferrari E., Parker H. M., Ordal G. W., Chamberlin M. J. 1990; Studies of σDdependent functions in Bacillus subtilis. . J Bacterial 172:3435–3443
    [Google Scholar]
  21. Mauël C., Karamata D. 1990 Identification of transcription units in the region encompassing teichoic acid genes of Bacillus subtilis . In Genetics and Biotechnology of Bacilli 3 pp 43–48 Zukowski M. M., Ganesan A. T., Hoch J. A. San Diego: Academic Press;
    [Google Scholar]
  22. Mauël C., Young M., Margot P., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol & Gen Genet 215:388–394
    [Google Scholar]
  23. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168 are organized in two divergent transcription units. J Gen Microbiol 137:929–941
    [Google Scholar]
  24. Mauël C., Young M., Monsutt-Grecescu A., Marriott S. A., Karamata D. 1994; Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140:2279–2288
    [Google Scholar]
  25. Muto A., Osawa S. 1987; The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169
    [Google Scholar]
  26. Pooley H. M., Paschoud D., Karamata D. 1987; The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J Gen Microbiol 133:3481–3493
    [Google Scholar]
  27. Pooley H. M., Abelian F.-X., Karamata D. 1991; A conditional- lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol- 3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137:921–928
    [Google Scholar]
  28. Pooley H. M., Abelian F.-X., Karamata D. 1992; CDP-glycerol: poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC) . J Bacterial 174:646–649
    [Google Scholar]
  29. Priest F. G. 1993 Systematics and ecology of Bacillus . In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp 3–16 Sonenshein A. L., Hoch J. A., Losick R. Washington DC: American Society for Microbiology;
    [Google Scholar]
  30. Sanger F., Nickten S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  31. Soldo B., Lazarevic V., Margot P., Karamata D. 1993; Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195
    [Google Scholar]
  32. Varón D., Boylan S. A., Okamoto K., Price C. W. 1993; Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor σ B . J Bacteriol 1753964–3971
    [Google Scholar]
  33. Young F. E. 1967; Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci USA: 582377–2384
    [Google Scholar]
  34. Young F. E., Smith C., Reilly B. E. 1969; Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. . J Bacterial 98:1087–1097
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-329
Loading
/content/journal/micro/10.1099/13500872-141-2-329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error