1887

Abstract

SUMMARY

The mosquito pathogenic fungus (Oomycetes: Lagenidiales) is a sterol auxotroph that can grow vegetatively in the absence of these compounds, but requires an exogenous source of sterols to enter its sexual and asexual reproductive cycles. Electrospray mass spectrometry (MS) and electrospray MS/MS were used to examine three major glycerophospholipid molecular species-glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE) and glycerophosphoinositol (GPI) - from fungal mycelium and nuclei grown in defined medium with and without isoprenoids which induce (cholesterol and ergosterol) or do not induce (squalene, cholestane) reproduction. Testosterone supplementation of defined media inhibited growth of so the effect of this steroid on phospholipid metabolism could not be assessed. Mycelium grown in defined media supplemented with these isoprenoids produced significantly different quantities of total phospholipid relative to unsupplemented media and to each other, ranging from a mean of 292 μg phosphate per g wet weight for cholesterol-supplemented media to 56 μg phosphate per g wet weight for mycelium grown in the presence of squalene. A very large percentage of the GPC (69-80 mol%) and GPI (74-79 mol%) molecular species from mycelia and nuclei contained ether linkages. GPE molecular species had 13-20 mol% ethercontaining moieties. The elevated levels of ether lipids may be related to the sterol auxotrophic nature of the fungus. Isoprenoid supplementation of defined growth media resulted in many significant changes in molecular species for all three lipid classes. Significant differences ( < 005) in the percentage of total cell ether lipids in GPC and GPE were generated by isoprenoid supplements to culture media. Mycelium grown in the presence of the two sterols which induce asexual and sexual reproduction in cholesterol and ergosterol, had a significantly greater percentage of ethercontaining GPE moieties. The glycerolipid species from nuclei isolated from cultures grown with cholesterol and ergosterol were similar to the composition of nuclei isolated from fungus cultured in defined medium without any supplement or supplemented with squalene. The nuclear membrane from mycelia grown in cholestane-supplemented media, however, had a very different glycerophospholipid composition relative to either whole cells or nuclei from cells grown on other media. It appears that one of the reasons that cyclic isoprenoids such as cholestane do not induce fungal reproduction is that they drastically alter the nuclear membrane glycerophospholipid composition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-399
1995-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-399.html?itemId=/content/journal/micro/10.1099/13500872-141-2-399&mimeType=html&fmt=ahah

References

  1. Aaronson L. R., Johnston A. M., Martin C. E. 1982; The effects of temperature acclimation on membrane sterols and phospholipids of Neurospora crassa . Biochim Biophys Acta 713:456–462
    [Google Scholar]
  2. Barksdale A. W. 1969; Sexual hormones of Achlya and other fungi . Science 166:831–837
    [Google Scholar]
  3. Barr D. J. S. 1992; Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84:1–11
    [Google Scholar]
  4. Bittman R., Clejan S., Lund-Katz S., Phillips M. C. 1984; Influence of cholesterol on bilayers of ester- and ether-linked phospholipids – permeability and 13 C-nuclear magnetic resonance measurements . Biochim Biophys Acta 772:117–126
    [Google Scholar]
  5. Bittman R., Fugler L., Clejan S., Lister M. D., Hancock A. J. 1992; Interaction of cholesterol with conformationally restricted phospholipids in vesicles. Biochim Biophys Acta 1106:40–44
    [Google Scholar]
  6. Bloch K. E. 1981; Sterol structure and membrane function. Curr Top Cell Reg 18:289–299
    [Google Scholar]
  7. Bloch K. E. 1983; Sterol structure and membrane function. Crit Rev Biochem 14:47–92
    [Google Scholar]
  8. Brockerhoff H. 1974; Model of interaction of polar lipids, cholesterol, and proteins in biological membranes. Lipids 9:645–650
    [Google Scholar]
  9. Brunt S. A., Silver J. C. 1991; Molecular cloning and characterization of two distinct hsp85 sequences from the steroid responsive fungus Achlya ambisexualis . Curr Genet 19:383–388
    [Google Scholar]
  10. Casey W. M., Keesler G. A., Parks L. W. 1992; Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae . J Bacteriol 174:7283–7288
    [Google Scholar]
  11. Cavalier-Smith T. 1989; The kingdom Chromista. In The Chromophyte Algae: Problems and Perspectives pp 381–407 Edited by Green J. C., Leadbeater B. S. C., Diver W. L. Oxford: Clarendon Press;
    [Google Scholar]
  12. Chapkin R. S., Davidson L. D., Davidson L. A. 1992; Phospholipid molecular species composition of mouse liver nuclei – influence of dietary n- 3 fatty acid ethyl esters . Biochem J 287:237–240
    [Google Scholar]
  13. Chia N.-C., Vilcheze C., Bittman R., Mendelsohn R. 1993; Interactions of cholesterol and synthetic sterols with phosphatidylcholines as deduced from infrared CH2 wagging progression intensities . J Am Chem Soc 115:12050–12055
    [Google Scholar]
  14. Cinci G., Pagani R., Pandolfi M. L., Porcelli B., Pizzichini M., Marinello E. 1993; Effects of testosterone on cholesterol levels and fatty acid composition in the rat. Life Sci 53:91–97
    [Google Scholar]
  15. Davidson S. M. K., Liu Y., Regen S. L. 1993; The influence of cholesterol on nearest-neighbor recognition in saturated phospholipid membranes. J Am Chem Soc 115:10104–10110
    [Google Scholar]
  16. Dembitsky V. M. 1989; Ether lipids of the organic world: formation and biotransformation. In Fats for the Future pp 173–188 Edited by Cambie R. C. Chichester: Ellis Horwood;
    [Google Scholar]
  17. Domnas A. J., Warner S. A. 1991; Biochemical activities of entomophagous fungi. Crit Rev Microbiol 18:1–13
    [Google Scholar]
  18. Domnas A. J., Srebro J. P., Hicks B. F. 1977; Sterol requirement for zoospore formation in the mosquito parasitizing fungus Lagenidium giganteum. Mycologia 69:875–886
    [Google Scholar]
  19. Elliot C. G. 1972; Sterols and the production of oospores by Phytophthora cactorum. J Gen Microbiol 72:321–327
    [Google Scholar]
  20. Elliot C. G. 1983; Physiology of sexual reproduction in Phytophthora . In Phytophthora : Its Biology, Taxonomy, Ecology, and Pathology pp 71–80 Edited by Erwin D. C., Bartnicki-Garcia S., Tsao P. H. St. Paul, Minnesota: American Phytopathological Society;
    [Google Scholar]
  21. Elliot C. G., Sansome E. 1977; The influence of sterols on meiosis in Phytophthora cactorum . J Gen Microbiol 98:141–145
    [Google Scholar]
  22. Fiske C. H., Subbarrow Y. 1925; The colorimetric determination of phosphorus. J Biol Chem 66:375–380
    [Google Scholar]
  23. Folch J., Lees M., Sloane-Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  24. Gleason F. H. 1968; Nutritional comparisons in the Leptomitales. Am J Bot 55:1003–1010
    [Google Scholar]
  25. Horgen P. A., Iwanochko M., Bettiol M. F. 1983; Antheridiol, RNA polymerase II and sexual development in the aquatic fungus, Achlya . Arch Microbiol 134:314–319
    [Google Scholar]
  26. Jollow D., Kellerman G. M., Linname A. W. 1968; The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of cells . J Cell Biol 37:221–230
    [Google Scholar]
  27. Kaneshiro E. S. 1980; Positional distribution of fatty acids in the major glycerophospholipids of Paramecium tetraurelia. J Lipid Res 21:559–570
    [Google Scholar]
  28. Kerwin J. L., Duddles N. D. 1989; Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi. J Bacteriol 171:3831–3839
    [Google Scholar]
  29. Kerwin J. L., Washino R. K. 1983; Sterol induction of sexual reproduction in Lagenidium giganteum . Exp Mycoll 7:109–115
    [Google Scholar]
  30. Kerwin J. L., Duddles N. D., Washino R. K. 1991; Effects of exogenous phospholipids on lipid composition and sporulation by three strains of Lagenidium giganteum . J Invert Pathol 58:408–414
    [Google Scholar]
  31. Kerwin J. L., Tuininga A. R., Ericsson L. H. 1994; Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 35:1102–1114
    [Google Scholar]
  32. Ko W. H. 1986; Stimulation of sexual reproduction of Phytophthora cactorum by phospholipids . J Gen Microbiol 131:2591–2594
    [Google Scholar]
  33. Kulkarni A. P., Smith E., Hodgson E. 1971; The phospholipids of Manduca sexta tissues and the incorporation, in vivo, of ethanolamine, choline, and inorganic phosphate . Insect Biochem 1:348–362
    [Google Scholar]
  34. Labremont E. N. 1972; Ether-bonded lipids of insects: a quantitative comparison of the glyceryl ethers associated with ethanolamine and choline phosphoglycerides. Comp Biochem Physiol 41B:337–342
    [Google Scholar]
  35. Labremont E. N., Ferguson J. R. III, Greer G. J. 1976; Confirmation of biosynthesis and partial structural characterization of the ether-linked ethanolamine phosphoglycerides of Heliothis . Insect Biochem 6:363–366
    [Google Scholar]
  36. Lee T. C., Fitzgerald V. 1980; Phase transitions of alkyl ether analogs of phosphatidylcholine. Biochim Biophys Acta 598:189–192
    [Google Scholar]
  37. Lorenz R. T., Rodriguez R. J., Lewis T. A., Parks L. W. 1986; Characteristics of sterol uptake in Saccharomyces cerevisiae . J Bacteriol 167:981–985
    [Google Scholar]
  38. McElroy F. A., Stewart H. B. 1967; The lipids of Lipomyces lipofer . Can J Biochem 45:171–178
    [Google Scholar]
  39. MacKichan J. K., Tuininga A. R., Kerwin J. L. 1994; Preliminary characterization of phospholipase A2 in Lagenidium giganteum . Exper Mycol 18:180–192
    [Google Scholar]
  40. McMorris T. C., Toft D. O., Moon S., Wang W. 1993; Biological response of the female strain Achlya ambisexualis 734 to dehydro-oogoniol and analogues . Phytochemistry 32:833–837
    [Google Scholar]
  41. Maziere C., Audair M., Mora L., Maziere J.-C. 1990; Modification of phospholipid polar head group with monomethylethanolamine and dimethylethanolamine decreases cholesteryl ester and triacylglycerol synthesis in cultured human fibroblasts. Lipids 25:311–315
    [Google Scholar]
  42. Meyer H., Meyer F. 1971; Lipid metabolism in the parasitic and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae . Biochim Biophys Acta 231:93–106
    [Google Scholar]
  43. Michell R. H., Hawthorne J. N. 1965; The site of diphospho-inositide synthesis in rat liver. Biochem Biophys Res Commun 21:333–338
    [Google Scholar]
  44. Mrsny R. J., Volwerk J. J., Griffith O. H. 1986; A simplified procedure for lipid phosphorus analysis shows that digestion rates vary with phospholipid structure. Chem Phys Lipids 39:185–191
    [Google Scholar]
  45. Pasenkiewicz-Gierula M., Subczynski W. K., Kusumi A. 1990; Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry 29:4059–4069
    [Google Scholar]
  46. Pasenkiewicz-Gierula M., Subczynski W. K., Kusumi A. 1991; Influence of phospholipid unsaturation on the cholesterol distribution in membranes. Biochimie 73:1311–1316
    [Google Scholar]
  47. Pinto W. J., Lozano R., Sekula B. C., Nes W. R. 1983; Stereochemically distinct roles for sterol in Saccharomyces cerevisiae . Biochem Biophys Res Commun 112:47–54
    [Google Scholar]
  48. Rodriguez R. J., Parks L. W. 1983; Structural and physiological features of sterols necessary to satisfy bulk membrane and sparking requirements in yeast sterol auxotrophs. Arch Biochem Biophys 225:861–871
    [Google Scholar]
  49. Rodriguez R. J., Taylor F. R., Parks L. W. 1982; A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol. Biochem Biophys Res Commun 106:435–441
    [Google Scholar]
  50. Rodriguez R. J., Low C., Bottema C. D. K., Parks L. W. 1985; Multiple functions for sterols in Saccharomyces cerevisiae . Biochim Biophys Acta 837:336–343
    [Google Scholar]
  51. de Rosa M., Gambacorta A. 1988; The lipids of archaebacteria. Prog Lipid Res 27:153–175
    [Google Scholar]
  52. Schmitz G., Beuck M., Fischer H., Mowicka G., Robenek H. 1990; Regulation of phospholipid biosynthesis during cholesterol influx and high density lipoprotein-mediated cholesterol efflux in macrophages. J Lipid Res 31:1741–1752
    [Google Scholar]
  53. Smith L. 1953; Spectrophotometric assay of cytochrome C oxidase. Methods Biochem Anal 2:427–434
    [Google Scholar]
  54. Spector A. A., Yorek M. A. 1985; Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035
    [Google Scholar]
  55. Van den Bossche H. 1990; Importance and role of sterols in fungal membranes. In Biochemistry of Cell Walls and Membranes in Fungi pp 135–157 Edited by Kuhn P. J., Trinci A. P. J., Jung M. J., Goosey M. W., Copping L. G. Berlin: Springer-Verlag;
    [Google Scholar]
  56. Warner S. A., Domnas A. J. 1981; Evidence for a cycloartenol-based sterol synthetic pathway in Lagenidium spp . Exp Mycol 5:184–188
    [Google Scholar]
  57. Weete J. D. 1980 Lipid Biochemistry of Fungi and Other Micro-organisms pp 1–179 New York: Plenum Press;
    [Google Scholar]
  58. Yeagle P. L. 1989; Lipid regulation of cell membrane structure and function. FASEB J 3:1833–1842
    [Google Scholar]
  59. Yeagle P. L. 1990; Role of cholesterol in cellular functions. In Advances in Cholesterol Research pp 111–132 Edited by Esfahani E., Swaney J. B. New Jersey: The Telford Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-399
Loading
/content/journal/micro/10.1099/13500872-141-2-399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error