1887

Abstract

SUMMARY: The formamidopyrimidine DNA glycosylase gene (-L) of the Gram-positive microaerophilic bacterium subsp. ML3 has been cloned, characterized and sequenced. The-L gene is composed of 819 bp encoding a protein of 31·3 kDa (Fpg-L). The deduced amino acid sequence of the Fpg-L protein shows 59% similarity and 38% identity with the Fpg protein (Fpg-E). Polyclonal antibodies against Fpg-E react with the Fpg-L protein. The Fpg-L protein was purified to apparent homogeneity from the overproducing strain BH410 hosting plasmid pVE1064, which carries -L under the control of the promoter. In its active form, Fpg-L is a 30 kDa monomeric enzyme with a measured isoelectric point of 9·0. It contains one zinc per molecule and has a zinc finger motif localized at the carboxy-terminal end (Cys-X-Cys-X-Cys-X-Cys-X-COOH). The Fpg-L protein has two enzyme activities: DNA glycosylase, which excises 2,6-diamino-4-hydroxy-5-methylformamidopyrimidine and 7,8-dihydro-8-oxoguanine, and DNA nicking at abasic sites. Furthermore, the expression of the-L gene inandmutants ofsuppresses their spontaneous GC | TA mutator phenotype. The similarity of the activity of the two Fpg proteins and its conservation in evolutionarily distant bacteria may reflect the importance of its role in protecting bacterial DNA against oxidative free radicals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-411
1995-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-411.html?itemId=/content/journal/micro/10.1099/13500872-141-2-411&mimeType=html&fmt=ahah

References

  1. Ames B. N., Shinegawa M. K., Hagen T. M. 1993; Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922
    [Google Scholar]
  2. Bailly V., Verly W. G., O'Connor T. R., Laval J. 1989; Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli formamidopyrimidine DNA glycosylase. Biochem J 262:581–589
    [Google Scholar]
  3. Boiteux S. 1993; Properties and biological functions of the NTH and FPG proteins: two DNA glycosylases that repair oxidative damage in DNA. Photochem Photobiol B 19:87–96
    [Google Scholar]
  4. Boiteux S., Huisman O. 1989; Isolation of a formamidopyrimidine DNA glycosylase (fpg) mutant of Escherichia coli K12. Mol & Gen Genet 215:300–305
    [Google Scholar]
  5. Boiteux S., Belleney J., Roques B. P., Laval J. 1984; Two rotameric forms of open-ring 7-methylguanine are present in alkylated polynucleotides. Nucleic Acids Res 12:5429–5439
    [Google Scholar]
  6. Boiteux S., O'Connor T. R., Laval J. 1987; Formamidopyrimidine DNA glycosylase of E. coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J 6:3177–3183
    [Google Scholar]
  7. Boiteux S., Lemaire M. A., Laval J. (1990a) Conservation of formamidopyrimidine DNA glycosylase activity in prokaryotes. Ionising Radiation Damage to DNA : Molecular Aspects pp 89–96 Edited by S. S. Wallace & R. B. Painter.;
    [Google Scholar]
  8. Boiteux S., O′Connor T. R., Lederer F., Gouyette A., Laval J. (1990b); Homogeneous Escherichia coli FPG protein. J Biol Chem 265:3916–3922
    [Google Scholar]
  9. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. 1992; Substrate specificity of the Escherichia coli Fpg protein : excision of purine lesion in DNA produced by ionizing radiation and photosensitization. Biochemistry 31:106–110
    [Google Scholar]
  10. Breimer L. H. 1984; Enzymatic excision from γ-irradiated polynucleotides of adenine residues whose imidazole ring have been ruptured. Nucleic Acids Res 12:6359–6367
    [Google Scholar]
  11. Breimer L. H. 1990; Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis : the role of DNA base damage. Mol Carcinog 3:188–197
    [Google Scholar]
  12. Breimer L. H., Lindahl T. 1985; Thymine lesions produced by ionizing radiation in double stranded DNA. Biochemistry 24:4018–4022
    [Google Scholar]
  13. Castaing B., Geiger A., Seliger H., Nehls P., Laval J., Zelwer C., Boiteux S. 1993; Cleavage and binding of a DNA fragment containing a single 8-oxoguanine by wild type and mutant FPG proteins. Nucleic Acids Res 21:2899–2905
    [Google Scholar]
  14. Chetsanga C. J., Lindahl T. 1979; Release of N7-methylguanine residues whose imidazole ring have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. . Nucleic Acids Res 6:3673–3684
    [Google Scholar]
  15. Chitnis P. R., Reilly P. A., Miedel M. C., Nelson N. 1989; Structure and mutagenesis of the gene encoding 8-kDa subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264:18374–18380
    [Google Scholar]
  16. Cupples C. G., Miller J. H. 1989; A set of lacZmutations in Escherichia coli that allow rapid detection of the six base substitutions. Broc Natl Acad Sci USA 86:5345–5349
    [Google Scholar]
  17. Czeczot H., Tudek B., Lambert B., Laval J., Boiteux S. 1991; Escherichia coliFpg protein and UvrABC endonuclease repair DNA damage induced by methylene blue plus visible light in vivo and in vitro. J Bacteriol 173:3419–3424
    [Google Scholar]
  18. Dizdaroglu M. 1991; Chemical determination of free-radical induced damage to DNA. Free Radical Biol & Med 10:225–242
    [Google Scholar]
  19. Dizdaroglu M., Laval J., Boiteux S. 1993; Substrate specificity of the E. coli endonuclease III : excision of thymine and cytosine derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32:12105–12111
    [Google Scholar]
  20. Duwat P., Ehrlich S. D., Gruss A. 1992; Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactissubsp.lactis recA gene. Applied Environ Microbiol 58:2674–2678
    [Google Scholar]
  21. Duwat P., Sourice S., Ehrlich S. D., Gruss A. 1994 recA gene involvement in oxidative and thermal stress in Lactococcus lactis. . In Genetics of Streptococci, Enterococci, and Lactococci. Edited by J. J. Ferretti (in press).;
    [Google Scholar]
  22. Graves R. J., Felzenswalb I., Laval J., O'Connor T. R. 1992; Excision of 5’-terminal deoxyribose phosphate from damaged DNA is catalysed by the Fpg protein of E. coli. . J Biol Chem 267:14429–14435
    [Google Scholar]
  23. Grollman A. P., Moriya M. 1993; Mutagenesis by 8- oxoguanine: an enemy within. Trends Genet 9:246–249
    [Google Scholar]
  24. Ivey D. M. 1990; Nucleotide sequence of a gene from alkaliphilic Bacillus firmus RAB that is homologous to the fpg gene of E. coli. . Nucleic Acids Rw 18:5882
    [Google Scholar]
  25. LeBourgeois P., Mata M., Rizenthaler P. 1992; Genome comparison of Lactococcus strains by pulsed-field electrophoresis. FEMS Microbiol Lett 55:65–70
    [Google Scholar]
  26. Lin J. J., Sancar A. 1989; A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 28:7979–7984
    [Google Scholar]
  27. Michaels L. M., Miller J. H. 1992; The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174:6321–6325
    [Google Scholar]
  28. Michaels L. M., Cruz C., Grollmann A. P., Miller J. H. 1992; Evidence that MutY and MutM combine to prevent mutation by an oxidative damaged form of guanine. . Proc Natl Acad Sci USA 89:7022–7025
    [Google Scholar]
  29. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor; NY: Cold Spring Harbor Laboratory:
    [Google Scholar]
  30. O'Connor T. R., Graves R. J., deMurcia G., Castaing B., Laval J. 1993; Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J Biol Chem 268:9063–9070
    [Google Scholar]
  31. Radicella P., Clarck E. A., Fox M. S. 1988; Some mismatch repair activities in Escherichia coli. . Proc Natl Acad Sci USA 85:9674–9678
    [Google Scholar]
  32. Rhiel E., Bryant D. A. 1992 GenBank data base, accession number JO5079
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.:
    [Google Scholar]
  34. Sancar A., Myles G. M. 1989; DNA repair. Chem Res Toxicol 2,197–226
    [Google Scholar]
  35. Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 1991; 8-Oxoguanine (8- hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694
    [Google Scholar]
  36. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  37. Tudek B., Laval J., Boiteux S. 1993; SOS independent mutagenesis in lacZ induced by methylene blue plus visible-light. Mol & Gen Genet 236:433–439
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-411
Loading
/content/journal/micro/10.1099/13500872-141-2-411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error