1887

Abstract

SUMMARY: JRG582 is an deletion derivative of strain HfrH and accordingly it is derepressed for expression of the cloned inducible β-lactamase gene of , carried on plasmid pNU305. Following chemical mutagenesis of JRG582(pNU305) a cefotaxime sensitive mutant was isolated, CS51(pNU305), which produced low levels of β-lactamase due to a mutation in the host chromosome. Two recombinant plasmids containing genomic DNA from HfrH, namely pUB5608 and pUB5611, were isolated as a consequence of their ability to restore the β-lactam resistant phenotype to CS51(pNU305). This ability was due to direct transcriptional activation of the β-lactamase gene, , rather than complementation of the CS51 mutation. Transposon mutagenesis and subcloning showed that restoration of ampicillin resistance to CS51(pNU305) was the function of a single gene, which maps at 60·3 min on the chromosome. The gene encodes a 33 kDa protein with significant homology to members of the LysR family of bacterial activator proteins, in particular the AmpR protein from Homology is especially strong over the N-terminal region which includes the helix-turn-helix DNA-binding motif. This gene was shown to complement the mutation at 60·3 min on the chromosome, and the DNA sequence agrees exactly with the published sequence of which encodes the transcriptional activator of the inducible glycine cleavage enzyme system. It is suggested that GcvA can activate transcription of by binding to the AmpR binding region upstream of so as to mimic the activated state of AmpR and hence provides an example of cross-talk between DNA-binding proteins of different inducible enzyme systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-419
1995-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-419.html?itemId=/content/journal/micro/10.1099/13500872-141-2-419&mimeType=html&fmt=ahah

References

  1. Appleyard R. K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1990 Current Protocols in Molecular Biology New York: J. Wiley and Sons;
    [Google Scholar]
  3. Bohannon D. E., Sonenshein A. L. 1989; Positive regulation of glutamate biosynthesis in Bacillus suhtilis . J Bacteriol 171:4718–4727
    [Google Scholar]
  4. Borck J., Beggs J. D., Brammer W. J., Hopkins A. S., Murray N. E. 1976; The construction in vitro of transducing derivatives of phage lambda. Mol & Gen Genet 146:199–207
    [Google Scholar]
  5. de Bruijn F. J., Lupski J. R. 1984; The use of transposon mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids - a review. Gene 27:131–149
    [Google Scholar]
  6. Brun Y. V., Breton R., Lanouette P., Lapointe J. 1990; Precise mapping and comparison of two evolutionarily related regions of the Escherichia coli K-12 chromosome. ] Mol Biol 214:333–350
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  8. Bush K. 1989; Classification of β-lactamases : groups 2c, 2d, 2e, 3, and 4. Antimicroh Agents Chemother 33:271–276
    [Google Scholar]
  9. Campbell J. I. A., Scahill S., Gibson T., Ambler R. P. 1989; The phototrophic bacterium Rhodopseudomonas capsulata spl08 encodes an indigenous class A β-lactamase. Biochem J 260:803–812
    [Google Scholar]
  10. Chang M., Hadero A., Crawford I. P. 1989; Sequence of the Pseudomonas aeruginosa trpI activator gene and relatedness of trpI to other procaryotic regulatory genes. J Bacteriol 171:172–183
    [Google Scholar]
  11. Davie E., Sydnor K., Rothfield L. I. 1984; Genetic basis of minicell formation in Escherichia coli K-12. J Bacteriol 158:1202–1203
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  13. Dougan G., Kehoe M. 1984; The minicell system as a method for studying expression from plasmic DNA. Methods Microbiol 17:233–257
    [Google Scholar]
  14. Dougan G., Sherratt D. J. 1977; The transposon Tnl as a probe for studying ColEl structure and function. Mol & Gen Genet 151:151–160
    [Google Scholar]
  15. Everett M. J., Chopra I., Bennett P. M. 1989; Induction of Citrobacter freundii Group I β-lactamase in Escherichia coli is not dependent on entry of β-lactam into the cytoplasm. Antimicroh Agents Chemother 34:2429–2430
    [Google Scholar]
  16. Everett M. J. 1992 Expression of Group 1 β-lactamases in Gramnegative bacteria University of Bristol, UK: PhD thesis;
    [Google Scholar]
  17. Haughn G. W., Wessler S. R., Gemmill R. M., Calvo J. M. 1986; High A + T content conserved in DNA sequences upstream of leuABCD in Escherichia coli and Salmonella typhimurium . J Bacteriol 166:1113–1117
    [Google Scholar]
  18. Henikoff S., Haughn G., Calvo J., Wallace J. 1988; A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606
    [Google Scholar]
  19. Honoré N., Nicolas M. H., Cole S. T. 1986; Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli . EMBO J 5:3709–3714
    [Google Scholar]
  20. Honoré N., Nicholas M. H., Cole S. T. 1989; Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Mol Microbiol 3:1121–1130
    [Google Scholar]
  21. Kohara Y., Aikiyama K., Isono K. 1987; The physical map of the whole Escherichia coli chromosome : application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  22. Korfmann G., Sanders C. C. 1989; AmpG is essential for high-level expression of ampC β-lactamase in Enterobacter cloacae . Antimicroh Agents Chemother 33:1946–1951
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680– 685
    [Google Scholar]
  24. Langley D., Guest R. F. 1977; Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J Gen Microbiol 99:263–276
    [Google Scholar]
  25. Lindberg F., Westman L., Normark S. 1985; Regulatory components in Citrobacter freundii AmpC β-lactamase induction. Proc Natl Acad Sci USA 82:4620–4624
    [Google Scholar]
  26. Lindquist S., Galleni M., Lindberg F., Normark S. 1989a; Signalling proteins in enterobacterial ampC β-lactamase regulation. Mol Microbiol 3:1091–1102
    [Google Scholar]
  27. Lindquist S., Lindberg F. P., Normark S. 1989b; Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171:3746–3753
    [Google Scholar]
  28. Lindquist S., Weston-Hafer K., Schmidt H., Pal C., Korfmann G., Erickson J., Sanders C., Martin H. H., Normark S. 1993; AmpG, a signal transducer in chromosomal β-lactamase induction. Mol Microbiol 9:703–715
    [Google Scholar]
  29. Lodge J. M., Minchin S. D., Piddock L. J. V., Busby S. J. W. 1990; Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β-lactamase. Biochem J 272:627–631
    [Google Scholar]
  30. Mackie G. A. 1986; Structure of the DNA distal to the gene for ribosomal protein S20 in Escherichia coli K12: presence of a strong terminator and an IS1 element. Nucleic Acids Res 14:6965–6981
    [Google Scholar]
  31. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Martinez E., Bartolomé, B., de la Cruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZ-α reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162
    [Google Scholar]
  33. Maxon M. E., Wigboldus J., Brot N., Weissbach H. 1990; Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA 87:7076–7079
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Neidle E. E., Hartnett C., Ornston L. N. 1989; Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol 171:5410–5421
    [Google Scholar]
  36. Normark S., Burman L. G. 1977; Resistance of Escherichia coli to penicillins: fine-structure mapping and dominance of chromosomal β-lactamase mutations. J Bacteriol 132:1–7
    [Google Scholar]
  37. Normark S., Bartowsky E., Lindquist S., Galleni M., Tuomanen E., Martin H. H., Schmidt H. 1990; The molecular basis of β- lactamase induction in enterobacteria. In New Antibacterial Strategies pp 161–173 Edited by Neu H. C. Edinburgh: churchill Livingstone;
    [Google Scholar]
  38. Oliva B., Bennett P., Chopra I. 1989; Penicillin-binding protein 2 is required for induction of the Citrobacter freundii class I β-lactamase in Escherichia coli . Antimicroh Agents Chemother 33:1116–1117
    [Google Scholar]
  39. Ottolenghi A. C., Ayala J. A. 1991; Induction of Class I β-lactamase from Citrobacter freundii in Escherichia coli requires active ftsZ but not ftsA otftsQ products. Antimicroh Agents Chemother 35:2359–2365
    [Google Scholar]
  40. Plamann L. S., Stauffer G. V. 1987; Nucleotide sequence of the Salmonella typhimurium metR gene and the metR-metE region. J Bacteriol 169:3932–3938
    [Google Scholar]
  41. Pullinger G. D., Baird G. D., Lax C. M., Williamson A. J. 1989; Nucleotide sequence of a plasmid gene involved in the virulence of salmonellas. Nucleic Acids Res 17:7983
    [Google Scholar]
  42. Rothmel R. K., Aldrich T. L., Houghton J. E., Coco W. M., Ornston L. N., Chakrabarty A. M. 1990; Nucleotide sequence and characterization of Pseudomonasputida catR: a positive regulator of the catBC operon is a member of the LysR family. J Bacteriol 172:922–931
    [Google Scholar]
  43. Sanders C. C., Sanders W. E. 1987; Clinical importance of inducible β-lactamases in Gram-negative bacteria. Eur J Clin Microbiol 6:435–437
    [Google Scholar]
  44. Sanger F. S., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  45. Schell M. A., Sukordhaman M. 1989; Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activator encoded by the Rhizobium nodD genes. J Bacteriol 171:1952–1959
    [Google Scholar]
  46. Schweizer H. P., Datta P. 1989; The complete nucleotide sequence of the tdc region of Escherichia coli . Nucleic Acids Res 17:3994
    [Google Scholar]
  47. Stragier P., Patte J. C. 1983; Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. III. Nucleotide sequence and regulation of the lysR gene. J Mol Biol 168:333–350
    [Google Scholar]
  48. Streber W. R., Timmis K. N., Zenk M. H. 1987; Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcalioenes eutrophus JMP134. J Bacteriol 169:2950–2955
    [Google Scholar]
  49. Tuomanen E., Lindquist S., Sande S., Galleni M., Light K., Gage D., Normark S. 1991; Co-ordinate regulation of β-lactamase induction and peptidoglycan composition by the amp operon. Science 251:201–204
    [Google Scholar]
  50. Ubben D., Schmitt R. 1987; A transposable promoter and transposable promoter probes derived from Tnl721. Gene 53:127–134
    [Google Scholar]
  51. Wilson R. L., Stauffer G. V. 1994; DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system. J Bacteriol 176:2862–2868
    [Google Scholar]
  52. Wilson R. L., Steiert P. S., Stauffer G. V. 1993; Positive regulation of the Escherichia coli glycine cleavage system. J Bacteriol 175:902–904
    [Google Scholar]
  53. Zhu Y., Lin C. 1988; A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli . J Bacteriol 170:2352–2358
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-419
Loading
/content/journal/micro/10.1099/13500872-141-2-419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error