1887

Abstract

SUMMARY:

The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-513
1995-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-513.html?itemId=/content/journal/micro/10.1099/13500872-141-2-513&mimeType=html&fmt=ahah

References

  1. Amann R., Krumholz L., Stahl D. A. 1990; Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770
    [Google Scholar]
  2. Amann R., Springer N., Ludwig W., Schleifer K. H. 1991; Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164
    [Google Scholar]
  3. Atlas R. M. 1983 Use of microbial diversity measurements to assess environmental stress. In Current Perspectives in Microbial Ecology pp 540–545 Edited by Klug M. J., Reddy C. A. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  4. Blackall L. L., Harbers A. E., Greenfield P. F., Hayward A. C. 1988; Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20:23–29
    [Google Scholar]
  5. Brosius J., Palmer L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  6. Choi B.K, Paster B. J., Dewhirst F. E., Göbel U. B. 1994; Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62:1889–1895
    [Google Scholar]
  7. DeLong E. F., Wickham G. S., Pace N. R. 1989; Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363
    [Google Scholar]
  8. Ferguson R. L., Buckley E. N., Palumbo A. V. 1984; Response of marine bacterioplankton to differential centrifugation and confinement. Appl Environ Microbiol 47:49–55
    [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  10. Fuhrman J. A., McCallum K., Davis A. A. 1992; Novel major archaebacterial group from marine plankton. Nature 356:148–149
    [Google Scholar]
  11. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. 1988; Phylogenetic group-specific oligonucleotide probes for the identification of single microbial cells. J Bacteriol 170:720–726
    [Google Scholar]
  12. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63
    [Google Scholar]
  13. Göbel U. B., Geiser A., Stanbridge E. J. 1987; Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species. J Gen Microbiol 133:1969–1974
    [Google Scholar]
  14. Hahn D., Amann R. I., Ludwig W., Akkermans A. D.L., Schleifer K.-H. 1992; Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138:879–887
    [Google Scholar]
  15. Hillis D. M., Huelsenbeck J. P., Swofford D. L. 1994; Hobgoblin of phylogenetics?. Nature 369:363–364
    [Google Scholar]
  16. Hoppe H.-G. 1978; Relationships between active bacteria and heterotrophic potential in the sea. Neth J Sea Res 12:78–98
    [Google Scholar]
  17. Jones J. G. 1977; The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol 7:61–l97
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132 Munro H. N. New York:: Academic Press.;
    [Google Scholar]
  19. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959
    [Google Scholar]
  20. Lasker B. A., Brown J. M., McNeil M. M. 1992; Identification and epidemiological typing of clinical and environmental isolates of the genus Rhodococcus with use of a digoxigenin-labeled rDNA gene probe. Clin Infect Dis 15:223–233
    [Google Scholar]
  21. Lechevalier H. A. 1989 Nocardioform actinomycetes. In Bergey’s Manual of Systematic Bacteriology 4 pp 2348–2404 Edited by Williams S. T , Sharpe M.E, Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Lemmer H., Kroppenstedt R. M. 1984; Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. Syst Appl Microbiol 5:124–135
    [Google Scholar]
  23. Liesack W., Weyland H., Stackebrandt E. 1991; Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21:191–198
    [Google Scholar]
  24. Liesack W., Stackebrandt E. 1992; Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078
    [Google Scholar]
  25. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:337–347
    [Google Scholar]
  26. Olsen G. J. 1990; Variation among the masses. Nature345–20
    [Google Scholar]
  27. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. 1986; Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365
    [Google Scholar]
  28. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W.-M., Make T. J., Xing Y., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res 20:2199–2200
    [Google Scholar]
  29. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. 1986; The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Eco l9:1–55
    [Google Scholar]
  30. Pickup R. W. 1991; Development of molecular methods for the detection of specific bacteria in the environment. J Gen Microbiol 137:1009–1019
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor: NY: Cold Spring Harbor Laboratory:
    [Google Scholar]
  33. Schmidt T. M., DeLong E. F., Pace N. R. 1991; Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378
    [Google Scholar]
  34. Sezgin M., Lechevalier M. P., Karr P. R. 1988; Isolation and identification of actinomycetes present in activated sludge scum. Water Sci Tecbnol 20:257–263
    [Google Scholar]
  35. Spring S., Amann R., Ludwig W., Schleifer K. H., Petersen N. 1992; Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst Appl Microbiol 15:116–122
    [Google Scholar]
  36. Van de Peer Y., De Wachter R. 1993; TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182
    [Google Scholar]
  37. Wagner M., Erhart R., Manz W., Amann R., Wedi D., Schleifer K. 1994; In situ monitoring of the genus Acinetobacter in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  38. Wanner J., Grau P. 1989; Identification of filamentous microorganisms from activated sludge: a compromise between wishes, needs and possibilities. Water Res 23:883–891
    [Google Scholar]
  39. Ward D. M., Weller R., Bateson M. M. 1990; 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G.E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  41. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  42. Weller R., Ward D. M. 1989; Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822
    [Google Scholar]
  43. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310
    [Google Scholar]
  44. Woese C. R., Stackebrandt E., Macke T. J., Fox G. E. 1985; A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151
    [Google Scholar]
  45. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-513
Loading
/content/journal/micro/10.1099/13500872-141-2-513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error