1887

Abstract

Pretreatment of bv. cultures with low, non-lethal levels of HO led to them becoming more resistant to killing by higher concentrations of this oxidant. The sensitivity of to HO-mediated oxidative stress varied with the growth phase of the cultures. Stationary phase cells were many times more resistant to killing by 3 mM HO than exponentially growing cultures. Unexpectedly, the catalase activity of cultures was found to rise to a maximum in the early-exponential growth phase and rapidly fall to a minimum during late-exponential growth. Further investigation showed that the induction and subsequent repression of catalase activity in exponential cultures is a cell-density-dependent phenomenon which appears to be controlled by the accumulation of extracellular compound(s) in the growth medium at high cell densities. In this respect, control of catalase resembles a number of other cell-density-regulated phenomena in bacteria which are controlled by the accumulation of extracellular molecules: the best studied example of this quorum sensing is the control of bacterial bioluminescence by the autoinducer. Preliminary data indicated that this extracellular component is a non-proteinaceous, heat-stable molecule.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-4-843
1995-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/4/mic-141-4-843.html?itemId=/content/journal/micro/10.1099/13500872-141-4-843&mimeType=html&fmt=ahah

References

  1. Appleby C. A. 1984; Leghaemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35: 443–478
    [Google Scholar]
  2. Bainton N. J., Bycroft B. W., Chabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E.D., Winson M. K., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. . Gene 116:87–91
    [Google Scholar]
  3. Brot N., Weissbach L., Werth J., Weisbach H. 1981; Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78: 2155–2158
    [Google Scholar]
  4. Chance B., Sies H., Boveris A. 1978; Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605
    [Google Scholar]
  5. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. 1985; Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. . Cell 41:753–762
    [Google Scholar]
  6. Christman M. F., Storz G., Ames B. N. 1989; OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coliand Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86:3484–3488
    [Google Scholar]
  7. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. 1984; Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140:532–537
    [Google Scholar]
  8. Clayton R. K. 1960; The induced synthesis of catalase in Rhodopseudomonas sphaeroides. . Biochim Biophys Acta 37:503–512
    [Google Scholar]
  9. Collinson L. P., Dawes I. W. 1992; Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 138:329–335
    [Google Scholar]
  10. Dalton D. A., Russell S. A., Hanus F. J., Pascoe G. A., Evans H. J. 1986; Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815
    [Google Scholar]
  11. Demple B. 1991; Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337
    [Google Scholar]
  12. Demple B., Halbrook J. 1983; Inducible repair of oxidative DNA damage in Escherichia coli. . Nature 304:466–468
    [Google Scholar]
  13. Demple B., Linn S. 1982; 5,6-Saturated thymine lesions in DNA production by ultraviolet light and hydrogen peroxide. Nucleic Acids Res 10:3781–3789
    [Google Scholar]
  14. Dowds B. C. A., Murphy P., McConnell D. J., Devine K. M. 1987; Relationship among oxidative stress, growth cycle and sporulation in Bacillus subtilis. . J Bacteriol 169:5771–5775
    [Google Scholar]
  15. Dubnau D. 1991; Genetic competence in Bacillus subtilis. . Microbiol Rev 55:395–424
    [Google Scholar]
  16. Farr S., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium. . Microbiol Rev 55:561–585
    [Google Scholar]
  17. Finn G. J., Condon S. 1975; Regulation of catalase synthesis in Salmonella typhimurium. . J Bacteriol 123:570–579
    [Google Scholar]
  18. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria : the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275
    [Google Scholar]
  19. Fridovich I. 1978; The biology of oxygen radicals. Science 201:875–880
    [Google Scholar]
  20. Graham P. H. 1992; Stress tolerance in Rhizobium and Brady- rhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484
    [Google Scholar]
  21. Greenberg J. T., Demple B. 1989; A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171:3933–3939
    [Google Scholar]
  22. Grossman A. D., Losick R. 1988; Extracellular control of spore formation in Bacillus subtilis. . Proc Natl Acad Sci USA 85:4369–4373
    [Google Scholar]
  23. Halliwell B., Gutteridge J. M. C. 1989 Free Radicals in Biology and Medicine. Oxford : Clarendon Press;
    [Google Scholar]
  24. Hassan H. M., Fridovich I. 1978; Regulation of the synthesis of catalase and peroxidase in Escherichia coli. . J Biol Chem 253:6445–6450
    [Google Scholar]
  25. Hill S. 1988; How is nitrogenase regulated by oxygen?. FEMS Microbiol Rev 54:111–130
    [Google Scholar]
  26. Jamieson D. J. 1992; Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681
    [Google Scholar]
  27. Kaiser D., Losick R. 1993; How and why bacteria talk to each other. Cell 73:873–885
    [Google Scholar]
  28. Kwiek S., Gabrys A., Lorenc R. 1970; Dependence of the activity of yeast catalase on yeast growth phases and culture conditions. Acta Microbiol Pol Ser B 2:111–114
    [Google Scholar]
  29. Long S. R. 1989; Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214
    [Google Scholar]
  30. Levin D. E., Hollstein M., Christman M. F., Schwiers E. A., Ames B. N. 1982; A new Salmonella tester strain (TA102) with AT base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci USA 79:7445–7449
    [Google Scholar]
  31. Ma M., Eaton J.W. 1992; Multicellular oxidant defence in unicellular organisms. Proc Natl Acad Sci USA 89:7924–7928
    [Google Scholar]
  32. Markwell M. A.K., Haas S. M., Bieber L. L., Tolbert N. F. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210
    [Google Scholar]
  33. Meighen E. A. 1991; Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142
    [Google Scholar]
  34. Nystrom T. 1993 In Starvation in Bacteria pp 129–150 Edited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  35. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130
    [Google Scholar]
  36. Rorth M., Jensen P. K. 1967; Determination of catalase activity by means of the Clark electrode. Biochim Biophys Acta 139:171–173
    [Google Scholar]
  37. Shapiro J. A. 1992; Differential action and differential expression of DNA polymerase I during Escherichia coli colony development. J Bacteriol 174:7262–7272
    [Google Scholar]
  38. Siegle D. A., Kolter R. 1992; Life after log. J Bacteriol 174:345–348
    [Google Scholar]
  39. Spaink H. P., Sheeley D. M., Van Brussel A. A. N., Glushka J., York W. S., Tak T., Geiger O., Kennedy E. P., Reinhold V. N., Lugtenberg B. J. J. 1991; A novel, highly unsaturated, fatty acid moiety of lipopolysaccharide signals determines host specificity of Rhizobium leguminosarum. . Nature 354:125–130
    [Google Scholar]
  40. Storz G., Tartaglia L. A., Farr S. B., Ames B. 1990; Bacterial defenses against oxidative stress. Trends Genet 6:363–368
    [Google Scholar]
  41. Vincent J. M. 1970 A Manual for the Practical Study of Root-nodule Bacteria Oxford: Blackwell;
    [Google Scholar]
  42. White D. C. 1962; Cytochrome and catalase patterns during growth of Haemophilus parainfluenzae . J Bacteriol 83:851–859
    [Google Scholar]
  43. Willey J., Santamaria R., Guijarro J., Geistlich M., Losick R. 1991; Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. . Cell 65:641–650
    [Google Scholar]
  44. Williams H. D., Appleby C. A., Poole R. K. 1990; The unusual behaviour of the putative terminal oxidases of Bradyrhizobium japonicum bacteroids revealed by low-temperature photodissociation studies. Biochim Biophys Acta 1019:225–232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-4-843
Loading
/content/journal/micro/10.1099/13500872-141-4-843
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error