1887

Abstract

Summary: One hundred and nineteen strains of alkaliphilic and alkalitolerant, aerobic endospore-forming bacteria were examined for 47 physiological and biochemical characters, and DNA base composition. Numerical analysis ( and /UPGMA clustering) revealed 11 clusters that comprised three or more strains. Most of the phena were further characterized by analysis of carbohydrate utilization profiles using the API 50CH system, but strains of two taxa could not be cultured by this method. DNA reassociation studies showed that nine of the phena were homogeneous, but strains of phenon 4 and phenon 8 were each subdivided into two DNA hydridization groups. The strains could therefore be classified into 13 taxa plus a number of unassigned single-membered clusters. Two taxa were equated with and and nine of the remainder are proposed as new species with the following names: sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., comb, nov., sp. nov., sp. nov. and sp. nov. Two taxa were insufficiently distinct to allow confident identification and these have therefore not been proposed as new species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-7-1745
1995-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/7/mic-141-7-1745.html?itemId=/content/journal/micro/10.1099/13500872-141-7-1745&mimeType=html&fmt=ahah

References

  1. Alexander B., Priest F.G. 1989; Bacillus glucanoljticus, a new species that degrades a variety of ;β-glucans.. Int J Sysi Bacterial 39:112–115
    [Google Scholar]
  2. Amann R.I., Lin C., Key R., Montgomery L., Stahl D.A. 1992; Diversity amongFibrobacter isolates; towards a phylogenetic classification.. Syst Appl Microbiol 15:23–31
    [Google Scholar]
  3. Ash C, Farrow J.A.E, Wallbanks S., Collins M.D. 1991; Phylogenetic heterogeneity of the genusBacillus revealed by comparative analysis of small subunit ribosomal RNA sequences.. Fett Appl Microbiol 13:202–206
    [Google Scholar]
  4. Aunstrup K., Andresen O., Outtrup H. 1971 UK: patent no. 1243784.
  5. Aunstrup K., Outtrup H., Andresen O., Dambmann C. 1972; Proteases from alkalophilicBacillus species.. In Fermentation Technology Today; Proceedings of the Ath International Fermentation Symposium, pp. 299–305 Osaka;: Society for Fermentation Technology.;
    [Google Scholar]
  6. Boyer E. W., Ingle M. B., Mercer G. D. 1973; Bacillus alcalophilus subsp.halodurans subsp. nov.: an alkaline amylase producing alkalophilic organism.. Int J Syst Bacterial 23:238–242
    [Google Scholar]
  7. Chislett M.E., Kushner D.J. 1961; A strain ofBacillus circulans capable of growing under highly alkaline conditions.. J Gen Microbiol 24:187–190
    [Google Scholar]
  8. Demharter W., Hensel R. 1989; Bacillus thermocloacae sp. nov., a new thermophilic species from sewage sludge.. Sjst Appl Microbiol 11:272–276
    [Google Scholar]
  9. Denariaz G., Payne W.J., Le Gail J. 1989; A halophilic denitrifier.Bacillus halodenitrificans sp. nov.. Int J Syst Bacterial 39:145–151
    [Google Scholar]
  10. Devereux R., He S.-H., Doyle C.L, Orkland S., Stahl D.A., Le Gall J., Whitman W.B. 1990; Diversity and origin ofDesulfovibrio species: phylogenetic definition of a family.. J Bacterial 172:3609–3619
    [Google Scholar]
  11. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of type strains of the genusBacillus. . Syst Appl Microbiol 6:60–65
    [Google Scholar]
  12. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilicBacillus strains.. Int J Syst Bacterial 40:92–97
    [Google Scholar]
  13. Gordon R.E., Hyde J.L. 1982; TheBacillus firmus-Bacillus lentus complex and the pH 7.0 variants of some alkalophilic strains.. J Gen Microbiol 128:1109–1116
    [Google Scholar]
  14. Gordon R.E., Haynes W.C., Pang C.H. 1973; The genusBacillus (Agricultural handbook no. 427). Washington,. DC: US Department of Agriculture.;
    [Google Scholar]
  15. Guffanti A.A. 1983; ATP-dependent Na+/H+ antiport activity inBacillus alcalophilus requires generation of an electrochemical gradient of protons.. FEMS Microbiol Eett 17:307–310
    [Google Scholar]
  16. Horikoshi K. 1971; Production of alkaline enzymes by alkalophilic microorganisms. Part 1. Alkaline protease produced byBacillus no. 221.. Agric Biol Chem 35:1407–1414
    [Google Scholar]
  17. Horikoshi K. 1975; Process for producing cyclodextrins.. US: patent no. 3923598.
    [Google Scholar]
  18. Horikoshi K. 1991 Microorganisms in Alkaline Environments. Weinheim:: VCH Verlagsgesellschaft.;
    [Google Scholar]
  19. Jones B. E., Grant W. D., Collins N. D., Mwatha W. E. 1994; Alkaliphiles: diversity and identification.. In Bacterial Diversitj and Sjstematics, pp. 195–230 Priest F. G., Ramos Cormenzana A., Tindall. B. Edited by New York:: Plenum Press.;
    [Google Scholar]
  20. Johnson J.L. 1981; Genetic characterization.. In Manual of Methods for General Bacteriology, pp. 450–472 Murray G. P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips. G. B. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  21. Kitamoto N., Kimura T., Kito Y., Ohmiya K. 1992; Cloning and sequencing of the gene encoding cyclodextrin glucano- transferase fromBacillus sp. KL201.. J Ferment Bioeng 74:345–351
    [Google Scholar]
  22. Logan N.A., Berkeley R.C.W. 1984; Identification ofBacillusstrains using the API system.. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W.B. 1989; Precise measurement of the G + C content of DNA by HPLC.. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  24. Nakamura S., Wakabayashi K., Nakai R., Aono R., Horikoshi K. 1993; Production of alkaline xylanase by a newly isolatedBacillus sp. YIM-1.. World J Microbiol Biotechnol 9,221–224
    [Google Scholar]
  25. Nielsen P., Rainey F.A., Outtrup H., Priest F.G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkali philic bacilli and the establishment of a sixth rRNA group within the genusBacillus. . FEMS Microbiol Eett 117:61–66
    [Google Scholar]
  26. Niimura Y., Koh E., Yanagida F., Suzuki K.-l., Komagata K., Kozaki M. 1990; Amphibacillus xjlanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase.. Int J Syst Bacteriol 40:297–301
    [Google Scholar]
  27. Priest F.G., Goodfellow M., Todd C. 1981; The genusBacillus:. a numerical analysis.. In The Aerobic Endospore-farming Bacteria: Classification and Identification, pp. 91–103 Berkeley R. C. W., Goodfellow. M. Edited by London New York:: Academic Press.;
    [Google Scholar]
  28. Priest F.G., Goodfellow M., Todd C. 1988; A numerical classification of the genusBacillus. . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  29. Rainey F.A., Fritze D., Stackebrandt E. 1994; The phylogenetic diversity of thermophilic members of the genusBacillus as revealed by 16S rDNA analysis.. FEMS Microbiol Eett 115:205–211
    [Google Scholar]
  30. Scholz T., Demharter W., Hensel R., Kandler O. 1988; Bacillus pallidus sp. nov., a new thermophilic species from sewage.. Sjst Appl Microbiol 9:91–96
    [Google Scholar]
  31. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology amongBacillus poljmjxa. Bacillus macerans. Bacillus as^otofixans, and other nitrogen-fixingBacillus strains.. Int J Syst Bacteriol 35:151–154
    [Google Scholar]
  32. Skerman V. B. D., McGowan V., Sneath P. H. A. Editors 1980; Approved lists of bacterial names.. Int J Syst Bacteriol 30:225–420
    [Google Scholar]
  33. Sneath P.H.A., Sokal R.R. 1973 Numerical Taxonomj. The Principles and Practice of Numerical Classification. San Francisco:: W. H. Freeman.;
    [Google Scholar]
  34. Spanka R., Fritze D. 1993; Bacillus cohnii sp. nov., a new obligately alkaliphilic oval-spore-formingBacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall.. Int J Syst Bacteriol 43:150–156
    [Google Scholar]
  35. Staley T.E., Colwell R.R. 1973; Application of molecular genetics and numerical taxonomy to the classification of bacteria.. Annu Rev Ecol Syst 4:273–300
    [Google Scholar]
  36. Suzuki Y., Kishigami T., Inoue K., Mizogushi Y., Eto N., Takagi M., Abe S. 1983; Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic Bacilli.. Sjst Appl Microbiol 4:487–95
    [Google Scholar]
  37. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase HPLC.. FEMS Microbiol Eett 25:125–128
    [Google Scholar]
  38. Vedder A. 1934; Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems.. Antonie Eeeuwenhoek 1:143–147
    [Google Scholar]
  39. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Murray R.G.E., Stackebrandt E., Starr M.P., Trüper H.G. 1987; Report of the ad hoc commitee on reconciliation of approaches to bacterial systematics.. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  40. White D., Sharp R.J., Priest F.G. 1993; A polyphasic study of thermophilic bacilli from a wide geographical area.. Antonie Eeeuwenhoek 64:357–386
    [Google Scholar]
  41. Williams S.T., Goodfellow M., Alderson G., Wellington E.M.H., Sneath P.H.A., Sackin M.J. 1983; Numerical classification ofStreptomjces and related genera.. J Gen Microbiol 129:1743–1813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-7-1745
Loading
/content/journal/micro/10.1099/13500872-141-7-1745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error