1887

Abstract

The gene cluster for the biosynthesis of the heterocyclic quinone antibiotic saframycin Mx1 of DM504/15 was inactivated and tagged by Tn5 insertions. The tagged genes were cloned in and used to select overlapping cosmid clones spanning 58 kb of the genome. Gene disruption experiments defined a ≥ 18 kb contiguous DNA region involved in saframycin biosynthesis. Sequencing of part of this region revealed a large ORF containing two 600-amino-acid domains with similarity to peptide synthetase amino-acid-activating sequences, suggesting that saframycin Mx1 is synthesized by a nonribosomal multienzyme complex, similar to other bioactive peptides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-8-1793
1995-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/8/mic-141-8-1793.html?itemId=/content/journal/micro/10.1099/13500872-141-8-1793&mimeType=html&fmt=ahah

References

  1. Adamidis T., Champness W. 1992; Genetic analysis of absB, a Streptomyces coelicolor locus involved in global antibiotic regulation. J Bacterid 174:4622–4628
    [Google Scholar]
  2. Adamidis T., Riggle P., Champness W. 1990; Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969
    [Google Scholar]
  3. Arai T., Takahashi K., Kubo A. 1977; New antibiotics, saframycins A, B, C, D, and E. J Antibiot 30:1015–1018
    [Google Scholar]
  4. Arai T., Takahashi K., Ishiguro K., Mikami Y. 1980; Antitumor antibiotics, saframycin A and C. Gann 71:790–796
    [Google Scholar]
  5. Arai T., Yazawa K., Takahashi K., Maeda A., Mikami Y. 1985; Directed biosynthesis of new saframycin derivates with resting cells of Streptomyces lavendulae. Antimicrob Agents Chemother 28:5–11
    [Google Scholar]
  6. Cosmina P., Rodriguez F., de Ferre F., Grandi G., Perego M., Venema G., van Sinderen D. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies D. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. D’Souza C., Nakanno M.M., Corbell N., Zuber P. 1993; Aminoacylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J Bacteriol 175:3502–3510
    [Google Scholar]
  9. Gerth K.H., Irschik H., Reichenbach H., Trowitzsh W. 1982; The myxovirescins, a family of antibiotics from Myxococcus virescens (myxobacterales). J Antibiot 35:1454–1459
    [Google Scholar]
  10. Gocht M., Marahiel M.A. 1994; Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol 176:2654–2662
    [Google Scholar]
  11. Hopwood D.A., Khosla C. 1992; Genes of polyketide secondary metabolic pathways in microorganisms and plants. In Secondary Metabolites: Their Function and Evolution (Ciba Foundation Symposium 171) pp. 88–112 Chadwick D.J., Whelan J. Edited by Chichester: John Wiley;
    [Google Scholar]
  12. Hori K.f, Yamamoto Y., Minetoki T., Kurotsu T., Kanda M., Miura S., Okamura K., Furujama J., Saito Y. 1989; Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J Biochem 106:639–645
    [Google Scholar]
  13. Irschick H., Trowitzsch-Kienast W., Gerth K., HOfle G., Reichenbach H. 1988; Saframycin Mxl, a new natural saframycin isolated from a myxobacterium. J Antibiot 41:993–998
    [Google Scholar]
  14. Ishiguro K., Sakiyama S., Takahashi K., Arai K. 1978; Mode of action of saframycin A, a novel heterocyclic quinone antibiotic. Inhibition of RNA synthesis in vivo and in vitro. Biochemistry 17:2545–2550
    [Google Scholar]
  15. Ishiguro K., Takahashi S., Yazawa K., Sakiyama S., Arai K. 1981; Binding of saframycin A, a heterocyclic quinone anti-tumor antibiotic, to DNA as revealed by the use of the antibiotic labeled with [14C]-tyrosine or [14C]-cyanide. J Biol Chem 256:2162–2167
    [Google Scholar]
  16. Kishi K., Yazawa K., Takahashi K., Maeda A., Arai K. 1984; Structure-activity relationships of saframycins. J Antibiot 37:847–852
    [Google Scholar]
  17. Kleinkauf H., von Döhren H. 1990; Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15
    [Google Scholar]
  18. Krätzschmar J., Krause M., Marahiel M.A. 1989; Gramicidin S biosynthesis operon containing the structual genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterase. J Bacterial 171:5422–5429
    [Google Scholar]
  19. Kroos L., Kaiser D. 1984; Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc Natl Acad Sci USA 81:5816–5820
    [Google Scholar]
  20. Kroos L., Kuspa A., Kaiser D. 1986; A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol 117:252–266
    [Google Scholar]
  21. Kuner J.M., Kaiser D. 1981; Introduction of transposon Tn5 into Myxococcus for analysis of develomental and other nonselectable mutants. Proc Natl Acad Sci USA 78:425–429
    [Google Scholar]
  22. Lawlor E.J., BayIis H.A., Chater K.F. 1988; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes & Dev 1:1305–1310
    [Google Scholar]
  23. Lown J.W., Joshua A.V., Lee J.S. 1982; Molecular mechanisms of binding and single-strand scission of desoxyribonucleic acid by the antitumor antibiotics saframycin A and C. Biochemistry 21:419–428
    [Google Scholar]
  24. Madozier P., Genilloud O., Giraud E., Gasser F. 1986; Expression of Tn5-encoded streptomycin resistance in E. coli. Mol & Gen Genet 204:404–409
    [Google Scholar]
  25. Marahiel M.A. 1992; Multidomain enzymes involved in peptide synthesis. FEBS Lett 307:40–43
    [Google Scholar]
  26. Mikami Y., Takahashi K., Yazawa K., Arai T., Namikokoshi M., Iwasaki S., Okuda S. 1985; Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J Biol Chem 260:344–348
    [Google Scholar]
  27. Nakatsubo F., Fukuyama T., Cocuzza J., Kishi Y. 1977; Synthetic studies toward mitomycins. II. Total synthesis of dl- porfiromycin. J Am Chem Soc 99:8115–8116
    [Google Scholar]
  28. Neumann B., Pospiech A., Schairer H.U. 1992; Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 8:332–333
    [Google Scholar]
  29. Pavela-Vrancic M., Pfeifer E., Schröder W., von Döhren H., Kleinkauf H. 1994; Identification of the ATP-binding site in tyrocidine synthetase I by selective modification with fluorescein 5’- isothiocyanate. J Biol Chem 269:14962–14966
    [Google Scholar]
  30. Reichenbach H. 1986; The myxobacteria: common organisms with uncommon behaviour. Microbiol Sci 3:268–274
    [Google Scholar]
  31. Reichenbach H., Gerth K., Irschik H., Kunze B., Höfle G. 1988; Myxobacteria: a source of new antibiotics. Trends Biotechnol 6:115–121
    [Google Scholar]
  32. Rusnak F., Sakaitani M., Drueckhammer D., Reichert J., Walsh C.T. 1991; Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry 30:2916–2927
    [Google Scholar]
  33. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular cloning-, a laboratory manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  35. Saulnier P., Hanquier J., Jaoua S., Reichenbach H., Guespin M.J. 1988; Utilization of IncP-1 plasmids as vectors for transposon mutagenesis in myxobacteria. J Gen Microbiol 134:2889–2895
    [Google Scholar]
  36. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M.A., Kruft V., Wittmann-Liebhold B. 1991; An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 266:23135–23141
    [Google Scholar]
  37. Schupp T., Toupet C., Cluzel B., Neff S., Hill S., Beck J.J., Ligon J.M. 1995; A Sorangium cellulosum (Myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic Soraphen A: cloning, characterization, and homology to polyketide synthases from Actinomycetes. J Bacterial 177: (in press)
    [Google Scholar]
  38. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791
    [Google Scholar]
  39. Simon R., O’Connell M., Labes M., Pühler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol 118:643–659
    [Google Scholar]
  40. Smith D.J., Earl A.J., Turner G. 1990; The multifunctional peptide synthetase performing the first steps in penicillin biosynthesis in Penicillium chrysogenum is a 421073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 9:2743–2750
    [Google Scholar]
  41. Stein T., Vater J., Kruft V., Wittmann-Liebold B., Franke P., Panico M., Dowell R.M., Morris H.R. 1994; Detection of 4’- phosphopantetheine at the thioester binding site for L-valine of gramicidin S synthetase 2. FEBS Lett 340:39–44
    [Google Scholar]
  42. Tohika K., Hori K., Kurotzu T., Kanda M., Saito Y. 1993; Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation. J Biochem 114:522–527
    [Google Scholar]
  43. Tolchinsky S., Fuchs N., Varon M., Rosenberg E. 1992; Use ofTn5lac to study expression of genes required for production of the antibiotic TA. Antimicrob Agents Chemother 36:2322–2337
    [Google Scholar]
  44. Trowitzsch-Kienast W., Irschick H., Reichenbach H., Wray V., Höfle G. 1988; Isolierung und Strukturaufklarung der Saframycine Mxl und Mx2, neue antitumor-aktive Antibiotika aus Myxococcus xanthus. Liebigs Ann Chem475–481
    [Google Scholar]
  45. Turgay K., Krause M., Marahiel M.A. 1992; Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6:529–546
    [Google Scholar]
  46. Varon M., Fuchs N., Monosov S., Tolchinsky S., Rosenberg E. 1992; Mutation and mapping of genes involved in production of the antibiotic TA in Myxococcus xanthus. Antimicrob Agents Chemother 36:2316–2321
    [Google Scholar]
  47. Vollenbroich D., Kluge B., D’Souza C., Zuber P., Vater J. 1993; Analysis of a mutant amino acid-activating domain of surfactin synthetase bearing a serine-to-alanine substitution at the site of carboxylthioester formation. FEBS Lett 325:220–224
    [Google Scholar]
  48. Weckermann R.W., Fllrbaβ R., Marahiel M.A. 1988; Complete nucleotide sequence of the tycA gene coding the tyrocidine I synthetase from Bacillus brevis. Nucleic Acids Res 16:11841
    [Google Scholar]
  49. Weinred S.M., Basha F.Z., Hibino N.A., Rye W.E., Wu T.T. 1982; Total synthesis of the antitumor antibiotic streptonigrin. J Am Chem Soc 104:536–544
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-8-1793
Loading
/content/journal/micro/10.1099/13500872-141-8-1793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error