1887

Abstract

The levels of exoamylase and other exoenzymes of are pleiotropically decreased by the ) and ) mutations. These mutations also cause a competence- and sporulation-deficient phenotype. In the present work, the ecs locus, which has been defined by the and mutations, was cloned and sequenced. Sequence analysis revealed a putative operon of three ORFs ( and can encode a putative polypeptide of 248 amino acid residues containing an ATP-binding site. The polypeptide shows about 30% sequence similarity with the ATP-binding components of numerous membrane transporters of the ABC-type (ATP-binding cassette transporters or traffic ATPases). The mutation was found to result from a transition of one base pair changing the glycine of EcsA to a glutamic acid residue in the vicinity of the putative ATP-binding pocket. was predicted to encode a hydrophobic protein with six membrane-spanning helices in a pattern found in other hydrophobic components of ABC transporters. The properties deduced for the and gene products are consistent with the interpretation that encodes a novel ABC-type membrane transporter of The third ORF, can encode a putative polypeptide of 237 amino acid residues. The polypeptide does not resemble components of ABC transporters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-71
1996-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-71.html?itemId=/content/journal/micro/10.1099/13500872-142-1-71&mimeType=html&fmt=ahah

References

  1. Alloing G., Trombe M.-C., Claverys J.-P. 1990; The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria. Mol Microbiol 4:633–644
    [Google Scholar]
  2. Ames G. F.-L., Mimura C. S., Shyamala V. 1990; Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: traffic ATPases. FEMS Microbiol Rev 75:429–446
    [Google Scholar]
  3. Ames G. F.-L., Mimura C. S., Holbrooks S. R., Shyamala V. 1992; Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv Enzymol 65:1–47
    [Google Scholar]
  4. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation of Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  5. Chung Y. J., Steen M. T., Hansen J. N. 1992; The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homolog of the hemolysin B transport protein. J Bacteriol 174:1417–1422
    [Google Scholar]
  6. Doige C. A., Ames G. F.-L. 1993; ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47:291–319
    [Google Scholar]
  7. Eisenberg D, Schwarz E, Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142
    [Google Scholar]
  8. Fath M. J., Kolter R. 1993; ABC transporters: bacterial exporters. Microbiol Rev 57:995–1017
    [Google Scholar]
  9. Gilson E., Nikaido H., Hofnung M. 1982; Sequence of the malK gene in E. coli K12. Nucleic Acids Res 10:7449–7458
    [Google Scholar]
  10. Gilson E, Alloing G, Schmidt T., Claverys J.-P., Dudler R., Hofnung M. 1988; Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO J 7:3971–3974
    [Google Scholar]
  11. Gryczan T., Contente S., Dubnau A. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134:318–329
    [Google Scholar]
  12. Hayashi S., Wu H. C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471
    [Google Scholar]
  13. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  14. Higgins C. F., Hiles I. D., Salmond G. P. C., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W., Hermodson M. A. 1986; A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450
    [Google Scholar]
  15. Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. 1990; Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365
    [Google Scholar]
  16. Kerppola R. E., Ames G. F.-L. 1992; Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. J Biol Chem 267:2329–2336
    [Google Scholar]
  17. Kerppola R. E., Shyamala V. K., Klebba P., Ames G. F.-L. 1991; The membrane-bound proteins of periplasmic permeases form a complex. J Biol Chem 266:9857–9865
    [Google Scholar]
  18. Klein C., Kaletta C., Schnell N., Entian K.-D. 1992; Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58:132–142
    [Google Scholar]
  19. Kontinen V. P., Sarvas M. 1988; Mutants of Bacillus subtilis defective in protein export. J Gen Microbiol 134:2333–2344
    [Google Scholar]
  20. Kontinen V. P., Sarvas M. 1993; The Prs A lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:121–131
    [Google Scholar]
  21. Kontinen V. P., Saris P., Sarvas M. 1991; A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol Microbiol 5:1273–1283
    [Google Scholar]
  22. Kraft R., Leinwand L. 1987; Sequence of the complete P protein gene and part of the M protein gene from the histidine transport operon of Escherichia coli compared to that of Salmonella typhimurium. Nucleic Acids Res 15:8568
    [Google Scholar]
  23. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  25. Mathiopoulos C., Mueller J. P., Slack F. J., Murphy C. G., Patankar S., Bukusoglu G., Sonenshein A. L. 1991; A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 5:1903–1913
    [Google Scholar]
  26. Moran C. P., Lang N., LeGrice S. F. J., Lee G, Stephens M, Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol & Gen Genet 186:339–346
    [Google Scholar]
  27. Palva I. 1982; Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 19:81–87
    [Google Scholar]
  28. Perego M., Higgins C. F., Pearce S. R., Gallagher M. P., Hoch J. A. 1991; The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5:173–185
    [Google Scholar]
  29. Rudner D. Z., LeDeaux J. R., Ireton K., Grossman A. D. 1991; The spoOK locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 173:1388–1398
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  32. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  33. Woodson K., Devine K. M. 1994; Analysis of a ribose transport operon from Bacillus subtilis. Microbiology 140:1829–1838
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-71
Loading
/content/journal/micro/10.1099/13500872-142-1-71
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error