1887

Abstract

The role of integration host factor (IHF) in the regulation of alginate synthesis was investigated in a mucoid strain of (strain CHA) isolated from a cystic fibrosis patient. strain BL21 (DE3) was made IHF-deficient by inactivation of its chromosomal IHF genes, and then used as host strain to overproduce IHF. The purified recombinant IHF protein was used to determine the affinity of IHF for the two IHF binding sites in the promoter. The values were determined to be 130 nM for IHF site 2 and about 2μM for IHF site 1. Two IHF-deficient mutants of strain CHA were constructed by insertional inactivation of the gene, and the activity of the promoter was determined using transcriptional fusion with as reporter gene. The expression of the structural gene for GDP-mannose dehydrogenase, was decreased three- to fourfold in the mutants under conditions of high salinity and nitrogen limitation. Assays of alginate production by cultures grown on agar plates indicated that the IHF-deficient mutants synthesized 50% less polymer than the mucoid parental strain. These results demonstrate clearly that although IHF is dispensable for alginate production, expression is required for full activation of expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2785
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2785.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2785&mimeType=html&fmt=ahah

References

  1. Aviv M., Giladi H., Schreiber G., Oppenheim A. B., Glaser G. 1994; Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol 14:1021–1031
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Chitnis C. E., Ohman D. E. 1993; Genetic analysis of the alginate biosynthetic cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8:583–590
    [Google Scholar]
  4. Delic-Attree I., Toussaint B., Vignais P. M. 1995; Cloning and sequence analysis of the genes coding for the integration host factor (IHF) and HU and proteins of Pseudomonas aeruginosa . Gene 154:61–64
    [Google Scholar]
  5. Deretic V., Konyecsni W. M. 1990; A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa . J Bacterial 172:5544–5554
    [Google Scholar]
  6. Deretic V., Gill J. F., Chakrabarty A. M. 1987; Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa . J Bacterial 169:351–358
    [Google Scholar]
  7. Deretic V., Dikshit R., Konyecsni W. M., Chakrabarty A. M., Misra T. K. 1989; The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171:1278–1283
    [Google Scholar]
  8. Deretic V., Hibler N. S., Holt S. C. 1992; Immunocytochemical analysis of AlgP (Hp1), a histonelike element participating in control of mucoidy in Pseudomonas aeruginosa . J Bacteriol 174:824–831
    [Google Scholar]
  9. Deretic V., Schurr M. J., Boucher J. C., Martin D. W. 1994; Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 176:2773–2780
    [Google Scholar]
  10. DeVault J. D., Berry A., Misra T. K., Darzins A., Chakrabarty A. M. 1989; Environmental sensory signals and microbial patho genesis: Pseudomonas aeruginosa infection in cystic fibrosis. Bio/Technology 7:352–357
    [Google Scholar]
  11. DeVault J. D., Hendrickson W., Kato J., Chakrabarty A. M. 1991; Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli . Mol Microbiol 5:2503–2509
    [Google Scholar]
  12. Ditton M. D., Roberts D., Weisberg R. A. 1994; Growth phase variation of integration host factor level in Escherichia coli . J Bacteriol 176:3738–3748
    [Google Scholar]
  13. Freundlich M., Ramani N., Mathew E., Sirko A., Tsui P. 1992; The role of integration host factor in gene expression in Escherichia coli . Mol Microbiol 6:2557–2563
    [Google Scholar]
  14. Gober J. W., Shapiro L. 1992; A developmentally regulated Caulobacter flagellar promoter is activated by 3’ enhancer and IHF binding elements. Mol Biol Cell 3:913–926
    [Google Scholar]
  15. Goldberg J. B., Dahnke T. 1992; Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol 6:59–66
    [Google Scholar]
  16. Hershberger C. D., Ye R. W., Parsek M. R., Xie Z. -D., Chak-rabarty A. M. 1995; The algP (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative a factor (σE). Proc Natl Acad Sci USA 92:7941–7945
    [Google Scholar]
  17. Higgins C. F., Hinton J. C. D., Hulton C. S. J., Owen-Hughes T., Pavitt G. D., Seirafi A. 1990; Protein H1 : a role for chromatin structure in the regulation of bacterial gene expression and virulence?. Mol Microbiol 4:2007–2012
    [Google Scholar]
  18. Hoover T. R., Santero E., Porter S., Kustu S. 1990; The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63:11–22
    [Google Scholar]
  19. Kato J., Misra T. K., Chakrabarty A. M. 1990; AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 87:2887–2891
    [Google Scholar]
  20. Knutson C. A., Jeanes A. 1968; A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481
    [Google Scholar]
  21. Konyecsni W. M., Deretic V. 1988; Broad-host-range plasmid and Ml3 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa . Gene 74:375–386
    [Google Scholar]
  22. Krieg D. P., Helmke R. J., German R. F., Mangos J. A. 1988; Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro . Infect Immun 28:546–556
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Leitão J. H., Sá-Correia I. 1995; Growth-phase-dependent alginate synthesis, activity of biosynthetic enzymes and transcription of alginate genes in Pseudomonas aeruginosa . Arch Microbiol 163:217–222
    [Google Scholar]
  25. May T. B., Chakrabarty A. M. 1994a; Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbioll151–157
    [Google Scholar]
  26. May T. B., Chakrabarty A. M. 1994b; Isolation and assay of Pseudomonas aeruginosa alginate. Methods Ensymol 235:295–304
    [Google Scholar]
  27. May T. B., Shinabarger D., Maharaj R., Kato J., Chu L., DeVault J. D., Roychoudhury S., Zielinski N., Berry A., Rothmel R. K., Misra T. K., Chakrabarty A. M. 1991; Alginate synthesis in Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev 4:191–206
    [Google Scholar]
  28. Miller J. H. 1972 In Experiments in Molecular Genetics pp. 4549–4557 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mohr C. D., Martin D. W., Konyecsni W. M., Govan J. R. W., Lory S., Deretic V. 1990; Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa . J Bacteriol 172:6576–6580
    [Google Scholar]
  30. Nash H. A. 1996; The E. coli HU and IHF proteins: accessory factors for complex protein-DNA assemblies. In Regulation of Gene Expression in Escherichia coli. Lin E. C. C., Lynch A. S. Edited by Austin, TX: R. G. Landes (in press);
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  33. Slack M. P. E., Nichols W. W. 1981; The penetration of antibiotics through sodium alginate and through the exopolysaccharide of a mucoid strain of Pseudomonas aeruginosa . Lancet ii502–503
    [Google Scholar]
  34. Schweizer H. P. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus suhtilis sacB marker. Mol Microbiol 6:1195–1204
    [Google Scholar]
  35. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendroff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Ensymol 185:60–89
    [Google Scholar]
  36. Toussaint B., Delic-Attree I., Vignais P. M. 1993a; Pseudomonas aeruginofa contains an IHF-like protein that binds to the algD promoter. Biochem Biophys Res Commun 196:416–421
    [Google Scholar]
  37. Toussaint B., Delic-Attree I., de Sury d’Aspremont R., David L., Vingon M., Vignais P. M. 1993b; Purification of the Integration Host Factor homolog of Rhodobacter capsulatus: cloning and sequencing of the hip gene, which encodes the ft subunit. J Bacteriol 175:6499–6504
    [Google Scholar]
  38. Vogel H. J. 1956; Acetylornithinase of Escherichia coli\ partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  39. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia- Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 128:81–86
    [Google Scholar]
  40. Wozniak D. J. 1994; Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression. J Bacteriol 176:5068–5076
    [Google Scholar]
  41. Wozniak D. J., Ohrnan D. E. 1991; Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol 173:1406–1413
    [Google Scholar]
  42. Wozniak D. J., Ohman D. E. 1993; Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J Bacteriol 175:4145–4153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2785
Loading
/content/journal/micro/10.1099/13500872-142-10-2785
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error