1887

Abstract

RP181110 produces the macrolide polyketide spiramycin. Like many other species, the RP181110 strain is prone to genetic instability involving genomic rearrangements (deletions and/or amplifications) in the large unstable region of the genome. It has previously been demonstrated that the amplification of a particular locus () affects spiramycin biosynthesis and, conversely, the loss of this amplification is correlated with the restoration of antibiotic production. This report focuses on a 0·93 kb reiterated fragment specific for the locus. Sequencing of 3596 bp including this reiteration revealed the presence of an ORF () whose potential product was highly homologous to the EryA and Raps proteins, responsible for the biosynthesis of erythromycin in and rapamycin in respectively. encodes a protein with at least four successive domains: ketoacyl synthase, acyltransferase, ketoreductase and acyl carrier protein. This organization is very similar to most and modules. The reiterated sequence corresponds to the acyltransferase domain. was transcribed during rapid growth and stationary phase in RP181110 and overtranscribed in the amplified mutant. Both these results suggest that the gene encodes a type I polyketide synthase and its reorganization is responsible for the loss of spiramycin production in the amplified strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2815
1996-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2815.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2815&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Aubert M., Weber E., Schneider D., Simonet J. -M., Decaris B. 1993; Primary structure analysis of a duplicated region in the amplifable AUD6 locus of Streptomyces ambofaciens DSM40697. FEMS Microbiol Lett 113:49–56
    [Google Scholar]
  3. Birch A., Haüsler A., Vögtli M., Krek W., Hütter R. 1989; Extremely large deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens . Mol Gen Genet 217:447–458
    [Google Scholar]
  4. Birch A., Haüsler A., Hütter R. 1990; Genome rearrangement and genetic instability in Streptomyces spp. J Bacterial 172:4138–4142
    [Google Scholar]
  5. Blanco G., Pereda A., Méndez C., Salas J. A. 1992; Cloning and disruption of a fragment of Streptomyces halstedii DNA involved in the biosynthesis of a spore pigment. Gene 112:59–65
    [Google Scholar]
  6. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F. 1990; An usually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea . Nature 348:176–178
    [Google Scholar]
  7. Dary A., Bourget N., Girard N., Simonet J. -M., Decaris B. 1992; Amplification of a particular DNA sequence in Streptomyces ambofaciens RP181110 reversibly prevents spiramycin production. Res Microbiol 143:99–112
    [Google Scholar]
  8. Dary A., Kaiser P., Bourget N., Thompson C. J., Simonet J. -M., Decaris B. 1993; Large genomic rearrangements of the unstable region in Streptomyces ambofaciens are associated with major changes in global gene expression. Mol Microbiol 10:759–769
    [Google Scholar]
  9. Davis N. K., Chater K. F. 1990; Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4:1679–1691
    [Google Scholar]
  10. Demain A. L., Aharonowitz Y., Martin J. F. 1983; Metabolic control of secondary biosynthetic pathways. In Biochemistry and Genetic Regulation of Commercially Important Antibiotics pp. 49–72 Vining L. C. Edited by London:: Addison-Wesley.;
    [Google Scholar]
  11. Demuyter P., Leblond P., Decaris B., Simonet J. -M. 1988; Characterization of two families of spontaneously amplifiable units of DNA in Streptomyces ambofaciens . J Gen Microbiol 134:2001–2007
    [Google Scholar]
  12. Dittrich W., Betzler M., Schrempf H., Schrempf H. 1991; An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol Microbiol 5:2789–2797
    [Google Scholar]
  13. Donadio S., Katz L. 1992; Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea . Gene 111:51–60
    [Google Scholar]
  14. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L. 1991; Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679
    [Google Scholar]
  15. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L. 1992; Biosynthesis of the erythromycin macrolactone and a rational approach for producing hybrid macrolides. Gene 115:97–103
    [Google Scholar]
  16. Geistlich M., Losick R., Turner J. R., Rao R. N. 1992; Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens . Mol Microbiol 6:2019–2029
    [Google Scholar]
  17. Gramajo H. C., White J., Hutchinson C. R., Bibb M. J. 1991; Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol 173:6475–6483
    [Google Scholar]
  18. Gramajo H. C., Takano E., Bibb M. J. 1993; Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845
    [Google Scholar]
  19. Guilfoile P. G., Hutchinson C. R. 1992; Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 174:3651–3658
    [Google Scholar]
  20. Haydock S. F., Aparicio J. F., Molnar I., Schwecke T., Khaw L. E., König A., Marsden A. F. A., Galloway I. S., Staunton J., Leadlay P. F. 1995; Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA: acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett 374:246–248
    [Google Scholar]
  21. Higgins D. G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple alignments on a microcomputer. Gene 73:237–244
    [Google Scholar]
  22. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66
    [Google Scholar]
  23. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich:: John Innes Foundation.;
    [Google Scholar]
  24. Hornemann U., Otto C. J., Hoffman G. G., Bertinuson A. C. 1987; Spectinomycin resistance and associated DNA amplification in Streptomyces achromogenes subsp. rubradiris . J Bacteriol 169:2360–2366
    [Google Scholar]
  25. Katz E., Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . J Gen Microbiol 129:2703–2714
    [Google Scholar]
  26. Leblond P., Demuyter P., Moutier L., Laakel M., Decaris B., Simonet J. -M. 1989; Hypervariability, a new phenomenon of genetic instability, related to DNA amplification in Streptomyces ambofaciens . J Bacteriol 171:419–421
    [Google Scholar]
  27. Leblond P., Demuyter P., Simonet J. -M., Decaris B. 1991; Genetic instability and associated genomic plasticity in Streptomyces ambofaciens: PFGE evidence for large DNA alterations in a limited genomic region. J Bacteriol 173:4229–4233
    [Google Scholar]
  28. Leblond P., Fischer G., Francou F. X., Berger F., Guérineau M., Decaris B. 1996; The unstable region of Streptomyces ambofaciensincludes 210-kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol Microbiol 19:261–272
    [Google Scholar]
  29. Lezhava A., Mizukami T., Kajitani T., Kameoka D., Redenbach M., Shinkawa H., Nimi O., Kinashi H. 1995; Physical map of the linear chromosome of Streptomyces griseus . J Bacteriol 177:6492–6498
    [Google Scholar]
  30. Lin Y. S., Kieser H. M., Hopwood D. A., Chen C. W. 1993; The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10:923–933
    [Google Scholar]
  31. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Aianual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  32. Mayorga M. E., Timberlake W. E. 1992; The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235:205–212
    [Google Scholar]
  33. Pernodet J. -L., Alegre M. -T., Blondelet-Rouault M. -H., Guérineau M. 1993; Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms. J Gen Microbiol 139:1003–1011
    [Google Scholar]
  34. Pinnert-Sindico S., Ninet L, Preud̓Homme J., Cosar C. 1955; A new antibiotic: spiramycin. Antibiot Annu 1954–1955724–757
    [Google Scholar]
  35. Potekhin Y. A., Danilenko V. N. 1985; The determinant of kanamycin resistance of Streptomjces rimosus: amplification in the chromosome and reversed genetic instability. Engl Transl Mol Biol 19:672–683
    [Google Scholar]
  36. Pridham T. G., Anderson P., Foley C., Lindenfelser L. A., Benedict R. G. 1957; A selection of media for maintenance and taxonomy study of Streptomjces . Antibiot Annu 1956–1957947–953
    [Google Scholar]
  37. Redenbach M., Flett F., Piendl W., Glocker I., Rauland U., Wafzig O., Kliem R., Leblond P., Cullum J. 1993; The Streptomjces lividans 66 chromosome contains a 1 Mb deletogenic region flanked by two amplifiable regions. Mol Gen Genet 241:255–262
    [Google Scholar]
  38. Richardson M. A., Kuhstoss S., Huber M. L. B., Ford L., Godfrey O., Turner J. R., Nagaraj Rao R. 1990; Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J Bacteriol 172:3790–3798
    [Google Scholar]
  39. Schneider D., Aigle B., Leblond P., Simonet J. -M., Decaris B. 1993; Analysis of genome instability in Streptomyces ambofaciens . J Gen Microbiol 139:2559–2567
    [Google Scholar]
  40. Schwecke T., Aparicio J. F., Molnar I., König A., Khaw L. E., Haydock S. F., Oliynyk M., Caffrey P., Cortés J., Lester J. B., Böhm G. A., Staunton J., Leadlay P. F. 1995; The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sei USA 927839–7843
    [Google Scholar]
  41. Sedlmeier R., Altenbuchner J. 1992; Cloning and DNA sequence analysis of the mercury resistance genes of Streptomjces lividans . Mol Gen Genet 236:76–85
    [Google Scholar]
  42. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. 1988; λ Zap: a bacteriophage λ expression vector with in vivo excision properties. Nucleic Acids Res 16:7583
    [Google Scholar]
  43. Swofford D. L. 1991; PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0s. Champaign, IL:: Illinois Natural History Survey.;
    [Google Scholar]
  44. Volff J. N., Vandewiele D., Simonet J. -M., Decaris B. 1993; Ultraviolet light, mitomycin C and nitrous acid induce genetic instability in Streptomjces ambofaciens ATCC23877. Mutat Res 287:141–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2815
Loading
/content/journal/micro/10.1099/13500872-142-10-2815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error