1887

Abstract

encounters a variety of acid stress situations during pathogenesis and in the natural environment. These include the extreme low pH encountered in the stomach and a less acidic intestinal environment containing large amounts of organic weak acids (volatile fatty acids). The acid tolerance response (ATR) is a complex defence system that can minimize the lethal effects of extreme low pH (pH 3). The data presented illustrate that the ATR can also defend against weak acids such as butyric, acetic or propionic acids. Although an acid shock of pH 4·4 induced the ATR, growth in subinhibitory concentrations of weak acids did not. Various mutations shown to affect tolerance to extreme acid conditions (pH 3) were tested for their effects on tolerance to weak acids. An mutant lacking the alternative sigma factor s failed to protect cells against weak acids as well as extreme acid pH. The (ferric uptake regulator) and (Mg-dependent ATPase) mutants defective in extreme acid tolerance showed no defects in their tolerance to weak acids. Curiously, the mutant that exhibits increased tolerance to extreme acid pH proved sensitive to weak acids. Several insertions that rendered cells sensitive to organic acids were isolated, all of which proved to be linked to the locus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3195
1996-11-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3195.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3195&mimeType=html&fmt=ahah

References

  1. Aliabadi Z., Park Y. K., Slonczewski S. L., Foster J. W. 1988; Novel regulatory loci controlling oxygen and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 170:842–851
    [Google Scholar]
  2. Bearson S. M. D., Benjamin W. H. J., Swords W. E., Foster J. W. 1996; Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol 178:2572–2579
    [Google Scholar]
  3. Benson N. R., Goldman B. S. 1992; Rapid mapping in Salmonella typhimurium with MW-P22 prophages. J Bacteriol 174:1673–1681
    [Google Scholar]
  4. Bergeim O. 1940; Toxicity of intestinal volatile fatty acids for yeast and E. coli. J Infect Dis 66:222–234
    [Google Scholar]
  5. Cherrington C. A., Hinton M., Chopra I. 1990; Effect of short- chain organic acids on macromolecular synthesis in Escherichia coli. J Bacteriol 68:69–74
    [Google Scholar]
  6. Cherrington C. A., Hinton M., Mead G. C., Chopra I. 1991a; Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32:87–108
    [Google Scholar]
  7. Cherrington C. A., Hinton M., Pearson G. R., Chopra I. 1991b; Short-chain organic acids at pH 5·0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J Appl Bacteriol 70:161–165
    [Google Scholar]
  8. Cummings J. H. 1981; Short chain fatty acids in the human colon. Gut 22:763–779
    [Google Scholar]
  9. Cummings J. H., Pomare E. W., Branch W. J., Naylor C. P. E., MacFarlane G. T. 1987; Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227
    [Google Scholar]
  10. Curtiss R.III Porter S. B., Munson M., Tinge S. A., Hassan J. O., Gentry-Weeks C., Kelly S. M. 1981; Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. In Colonisation Control of Human Bacterial Enteropathogens in Poultry pp. 169–198 New York: Academic Press;
    [Google Scholar]
  11. Davis R. W., Botstein D., Roth J. R. 1980; A Manualfor Genetic Engineering. Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Eklund T. 1980; Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J Appl Bacteriol 48:423–432
    [Google Scholar]
  13. Fay J. P., Farias R. N. 1975; The inhibitory action of fatty acids on the growth of Escherichia coli. J Gen Microbiol 91:233–240
    [Google Scholar]
  14. Foster J. W. 1991; Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol 173:6896–6902
    [Google Scholar]
  15. Foster J. W. 1993; The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987
    [Google Scholar]
  16. Foster J. W., Bearson B. 1994; Acid sensitive mutants of Salmonella typhimurium identified through a dinitrophenol selection strategy. J Bacteriol 176:2596–2602
    [Google Scholar]
  17. Foster J. W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172:771–778
    [Google Scholar]
  18. Foster J. W., Hall H. K. 1991; Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135
    [Google Scholar]
  19. Foster J. W., Hall H. K. 1992; The effect of Salmonella typhimurium ferric-uptake regulator (fur) mutations on iron and pH- regulated protein synthesis. J Bacteriol 174:4317–4323
    [Google Scholar]
  20. Foster J. W., Spector M. 1995; How Salmonella survives against the odds. Annu Rev Microbiol 49:145–174
    [Google Scholar]
  21. Freese E., Sheu C. W., Galliers E. 1973; Functions of lipophilic acids as antimicrobial food additives. Nature 241:321–325
    [Google Scholar]
  22. Goodson M., Rowbury R. J. 1989; Resistance of acid- habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol 8:211–214
    [Google Scholar]
  23. Hentges D. J., Marsch W. W., Petschow B. W., Rahman M. E., Dougherty S. H. 1995; Influence of a human milk diet on colonisation resistance mechanisms against Salmonella typhimurium in human faecal bacteria-associated mice. Microb Ecol Health Dis 8:139–149
    [Google Scholar]
  24. Holley E. A., Foster J. W. 1982; Bacteriophage P22 as a vector for Mu mutagenesis in Salmonella typhimurium: isolation of nad-lac and pnc-lac gene fusions. J Bacteriol 152:959–962
    [Google Scholar]
  25. Lange R., Fischer D., Hengge-Aronis R. 1995; Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σ8 subunit of RNA polymerase in Escherichia coli. J Bacteriol 177:4676–4680
    [Google Scholar]
  26. Lee I. S., Slonczewski J. L., Foster J. W. 1994; A low-pH inducible stationary phase acid tolerance response in Salmonella typhimurium. J Bacteriol 176:1422–1426
    [Google Scholar]
  27. Lee I. S., Lin J., Hall H. K., Bearson B., Foster J. W. 1995; Thestationary-phase sigma factor σs (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol 17:155–167
    [Google Scholar]
  28. Lin J., Lee I. S., Frey J., Slonczewski J. L., Foster J. W. 1995; Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli. J Bacteriol 177:4097–4104
    [Google Scholar]
  29. Loewen P. C., Hengge-Aronis R. 1994; The role of the sigma factor σS(KatF) in bacterial global regulation. Annu Reu Microbiol 48:53–80
    [Google Scholar]
  30. MacFarlane G. T., Gibson G. R., Cummings J. H. 1992; Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64
    [Google Scholar]
  31. Przybylski K., Witter L. 1979; Injury and recovery of Escherichia coli after sublethal acidification. Appl Environ Microbiol 37:261–265
    [Google Scholar]
  32. Roth L., Keenan D. 1971; Acid injury of Escherichia coli. Can J Microbiol 17:1005–1008
    [Google Scholar]
  33. Russell J. B. 1992; Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370
    [Google Scholar]
  34. Salmond C. V., Kroll R. G., Booth I. R. 1984; The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850
    [Google Scholar]
  35. Takayanagi Y., Tanaka K., Takahashi H. 1994; Structure of the 5′ upstream region and regulation of the rpoS gene of Escherichia coli. Mol Gen Genet 243:525–531
    [Google Scholar]
  36. Vogel H. J., Bonner D. M. 1956; Acetylornithase of Escherichia coli. partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3195
Loading
/content/journal/micro/10.1099/13500872-142-11-3195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error