1887

Abstract

Summary: Addition of allophane, a phosphate-trapping agent, to two different strains of exerted a large stimulatory effect on cephamycin biosynthesis. The biosynthesis of cephamycin is inhibited by inorganic phosphate at concentrations above 5 m and allophane reversed this inhibitory effect. Allophane-supplemented cultures showed increased activities and/or an extended life in the cell of four cephamycin biosynthetic enzymes: isopenicillin N synthase, the two-protein-component 7-cephem methoxylase (7-cephem hydroxylase and 7-hydroxycephem methyltransferase) and 3′-hydroxymethylcephem -carbamoyltransferase. However, the first enzyme of the pathway, lysine 6-aminotransferase, was not stimulated by allophane. Allophane-supplemented cultures showed increased protein levels of (i) -aminoadipyl-cysteinyl-valine synthetase (the condensing multienzyme that forms the tripeptide intermediate), and (ii) the two proteins involved in the 7-cephem methoxylase, as shown by immunoblotting with antibodies against each of these proteins. Phosphate repressed the synthesis of these proteins but did not increase their degradation. These results indicated that allophane stimulates expression of the cluster of genes extending from the gene (encoding -aminoadipyl-cysteinyl-valine synthetase) to (encoding the two-protein methoxylase) and (encoding the -carbamoyltransferase).

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3399
1996-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3399.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3399&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1979; Nitrogen nutrition and regulation of cephalosporin production inStreptomyces clavuligerus. Can J Microbiol 25:61–67
    [Google Scholar]
  2. Aharonowitz Y., Cohen G., Martín J. F. 1992; Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol 46:461–496
    [Google Scholar]
  3. Asturias J. A., Liras P., Martín J. F. 1990; Phosphate control ofpabSgene transcription during candicidin biosynthesis. Gene 93:79–84
    [Google Scholar]
  4. Coque J. J. R., Martín J. F., Calzada J. G., Liras P. 1991a; The cephamycin biosynthetic genespcbKB,encoding a large multidomain peptide synthase, andpcbCofNocardia lactamduransare clustered together in an organization different from the same genes inAcremonium chrysogenumandPnicillium chrysogenum.. Mol Microbiol 5:1125–1133
    [Google Scholar]
  5. Coque J. J. R., Liras P., Láiz L., Martín J. F. 1991b; A gene encoding lysine 6-aminotransferase which forms ±-aminoadipic acid, a precursor of β-lactam antibiotics, is located in the cluster of cephamycin biosynthetic genes inNocardia lactamdurans.. J Bacteriol 173:6258–6264
    [Google Scholar]
  6. Coque J. J. R., Liras P., Martín J. F. 1993a; Genes for a β-lactamase, a penicillin-binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes inNocardia lactamdurans.. EMBO J 12:631–639
    [Google Scholar]
  7. Coque J. J. R., Martín J. F., Liras P. 1993b; Characterization and expression inStreptomyces lividansofcefDandcefEgenes fromNocardia lactamdurans:the organization of the cephamycin gene cluster differs from that inStreptomyces clavuligerus.. Mol Gen Genet 236:453–458
    [Google Scholar]
  8. Coque J. J. R., Pérez-Llarena F. J., Enguita F. J., de la Fuente J. L, Martín J. F., Liras P. 1995a; Characterization of thecmcHgenes ofNocardia lactamduransandStreptomyces clavuligerusencoding a functional 3′-hydroxymethylcephem O-carbamoyltransferase from cephamycin biosynthesis. Gene 162:21–27
    [Google Scholar]
  9. Coque J. J. R., Enguita F. J., Martín J. F., Liras P. 1995b; A two-protein component 7α-cephem-methoxylase encoded by two genes of the cephamycin C cluster converts cephalosporin to 7-methoxycephalosporin C. J Bacteriol 177:2230–2235
    [Google Scholar]
  10. Coque J. J. R., Enguita F. J., Cardoza R. E., Martín J. F., Liras P. 1996a; Characterization of thecefFgene ofNocardia lactamduransencoding a 3′-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl Microbiol Biotechnol 44:605–609
    [Google Scholar]
  11. Coque J. J. R., de la Fuente J. L., Liras P., Martín J. F. 1996b; Overexpression of theNocardia lactamdurans±-aminoadipyl- cysteinyl-valine synthase inStreptomyces lividans.The purified multienzyme uses cystathione and 6-oxopiperidine-2-carboxylate as substrates for synthesis of the tripeptide. Eur J Biochem(in press)
    [Google Scholar]
  12. Cortés J., Liras P., Castro J. M., Martín J. F. 1986; Glucose regulation of cephamycin biosynthesis inStreptomyces lactamduransis exerted on the formation of ±-aminoadipyl-cysteinyl-valine and deacetoxycephalosporin C synthase. J Gen Microbiol 132:1805–1814
    [Google Scholar]
  13. Criado L. M., Martín J. F., Gil J. A. 1993; Thepabgene ofStreptomyces griseus,encoding p-aminobenzoic acid synthase, is located between genes possibly involved in candicidin biosynthesis. Gene 126:135–139
    [Google Scholar]
  14. Enguita F. J., Liras P., Leitão A. L., MartÐn J. F. 1997; Interaction of the two proteins of the mthoxylation system involved in cephamycin C biosynthesis: immunoaffinity, protein crosslinking and fluorescence spectroscopy studies. J Biol Chem (in press)
    [Google Scholar]
  15. Horinouchi S., Malpartida F., Hopwood D. A., Beppu T. 1989; afsBstimulates transcription of the actinorhodin biosynthetic pathway inStreptomyces coelicolorA3(2) andStreptomyces lividans.. Mol Gen Genet 215:355–357
    [Google Scholar]
  16. Kern B. A., Hendlin D., Inamine E. 1980; l-Lysine ε-aminotransferase involved in cephamycin C synthesis inStreptomyces lactamdurans.. Antimicrob Agents Chemotber 17:679–685
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  18. Láiz L., Liras P., Castro J. M., Martín J. F. 1990; Purification and characterization of the isopenicillin N epimerase fromNocardia lactamdurans.. J Gen Microbiol 136:663–671
    [Google Scholar]
  19. Leskiw B. K., Aharonowitz Y., Mevarech M., Wolfe S., Vining L. C., Westlake D. W. S., Jensen S. E. 1988; Cloning and nucleotide sequence determination of the isopenicillin N synthetase gene fromStreptomyces clavuligerus.. Gene 62:187–196
    [Google Scholar]
  20. Liras P., Asturias J. A., Martín J. F. 1990; Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis. Trends Biotechnol 8:184–189
    [Google Scholar]
  21. Lübbe C., Jensen S. E. 1984; Prevention of phosphate inhibition of cephalosporin synthetases by ferrous ion. FEMS Microbiol Lett 25:75–79
    [Google Scholar]
  22. Lübbe C., Wolfe S., Demain A. L. 1985; Repression and inhibition of cephalosporin synthetases inStreptomyces clavuligerusby inorganic phosphate. Arch Microbiol 140:317–320
    [Google Scholar]
  23. Malmberg L. -H., Hu W. -S., Sherman D. H. 1995; Effects of enhanced lysine ε-aminotransferase activity on cephamycin bio-synthesis inStreptomyces clavuligerus.. Appl Microbiol Biotechnol 44:198–205
    [Google Scholar]
  24. Martín J. F. 1989; Molecular mechanisms for the control by phosphate of the biosynthesis of antibiotics and other secondary metabolites. In Regulation of Secondary Metabolism in Actinomycetes pp. 213–237 Shapiro S. Edited by Boca Raton, FL: CRC Press;
    [Google Scholar]
  25. Martín J. F., Demain A. L. 1976; Control by phosphate of candicidin biosynthesis. Biochem Biophys Res Commun 71:1103–1109
    [Google Scholar]
  26. Martín J. F., Demain A. L. 1980; Control of antibiotic synthesis. Microbiol Rev 44:230–251
    [Google Scholar]
  27. Martín J. F., Liras P. 1989; Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43:173–206
    [Google Scholar]
  28. Martín J. F., Marcos A. T., Martín A., Asturias J. A., Liras P. 1994; Phosphate control of antibiotic biosynthesis at the trans-criptional level. In Phosphate in Microorganisms: Cellular and Molecular Biology pp. 140–147 Torriani-Gorini A., Yagil E., Silver S. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Masuma R., Tanaka Y., Tanaka H., Omura S. 1986; Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents. J Antibiot 39:1557–1564
    [Google Scholar]
  30. Matsumoto A., Hong S. -K., Ishizuka H., Horinouchi S., Beppu T. 1994; Phosphorylation of the AfsR protein involved in secondary metabolism inStreptomycesspecies by a eukaryotic-type protein kinase. Gene 146:47–56
    [Google Scholar]
  31. Omura S., Tanaka Y. 1986; Biosynthesis of tylosin and its regulation by ammonium and phosphate. In Regulation of Secondary Metabolite Formation pp. 305–332 Kleinkauf H., von Döhren H., Dornauer H., Nesemann G. Edited by Germany: VCH Weinheim;
    [Google Scholar]
  32. Tanaka Y., Kanaya I., Takahashi Y., Shinose M., Tanaka H., Omura S. 1993; Phthoxazolin A, a specific inhibitor of cellulose biosynthesis from microbial origin. J Antibiot 46:1208–1213
    [Google Scholar]
  33. Torriani-Gorini A. M. 1994; Regulation of phosphate metabolism and transport. In Phosphate in Microorganisms:Cellular and Molecular Biology pp. 1–4 Torriani-Gorini A. E., Yagil E., Silver S. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Zhang J. Y., Wolfe S., Demain A. L. 1989; Phosphate regulation of ACV synthetase and cephalosporin biosynthesis inStreptomyces clavuligerus.. FEMS Microbiol Lett 57:145–150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-12-3399
Loading
/content/journal/micro/10.1099/13500872-142-12-3399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error