1887

Abstract

Summary: In a phosphoenolpyruvate: mannose phosphotransferase system (mannose-PTS) has been characterized and it was shown to be involved in glucose and mannose transport, but no glucose-specific PTS activity could be detected. A 2.1 kb DNA fragment amplified by PCR from the genome was sequenced. Sequence analysis showed four ORFs which could encode proteins similar to PTS transporters EIIA, EIIB, EIIC and EIID of the mannose class. The expression of the gene (encoding EIIB) from in a mutant of impaired in EII activity restored this activity. Furthermore, this DNA fragment complemented the regulatory function of LevE (EIIB) in a -deficient mutant, suggesting that the protein encoded by could also play a regulatory role in

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3469
1996-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3469.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3469&mimeType=html&fmt=ahah

References

  1. Abe K., Uchida K. 1989; Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate: mannose phosphotransferase system in Pediococcus halophilus.. J Bacteriol 171:1793–1800
    [Google Scholar]
  2. Berthier F., Zagorec M., Champomier-Vergès M., Ehrlich S. D., Morel-Deville F. 1996; Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142:1273–1279
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Bron S., Luxen E. 1985; Segregational instability of pUBllO- derived recombinant plasmids in Bacillus subtilis.. Plasmid 14:235–244
    [Google Scholar]
  5. Chassy B., Thompson J. 1983; Regulation of lactose- phosphoenolpyruvate-dependent-phosphotransferase system and β-d-phosphogalactosidase galactohydrolase activities in Lactobacillus casei.. J Bacteriol 154:1195–1203
    [Google Scholar]
  6. Dittmer J. C., Wells M. A. 1969; Quantitative and qualitative analysis of lipids and lipid compounds. Methods Enɀymol 14:482–529
    [Google Scholar]
  7. Erni B., Zanolari B., Kocher H. P. 1987; The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247
    [Google Scholar]
  8. Gauthier L., Bourassa S., Brochu D., Vadeboncoeur C. 1990; Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants. Oral Microbiol Immunol 5:352–359
    [Google Scholar]
  9. Hammes W. P., Bantleon A., Min S. 1990; Lactic acid bacteria in meat fermentation. FEMS Microbiol Rev 87:165–174
    [Google Scholar]
  10. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5:151–153
    [Google Scholar]
  11. Kok J., van der Vossen J. M. B. M., Venema G. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. . Appl Environ Microbiol 48:726–731
    [Google Scholar]
  12. Kunst F., Steinmetz M., Lepesant J. A., Dedonder R. 1977; Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilisMarburg 168. Biochimie 59:287–292
    [Google Scholar]
  13. Lauret R., Morel-Deville F., Berthier F., Champomier-Vergès M., Postma P., Ehrlich S. D., Zagorec M. 1996; Carbohydrate utilization in Lactobacillus sake.. Appl Environ Microbiol 62:1922–1927
    [Google Scholar]
  14. Lee J. -K., Sung M. -H., Yoon K.-H., Yu J.-H., Oh T.-K. 1993; Cloning and expression of the gene encoding mannose enzyme II of the Corynebacterium glutamicum phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli.. J Microbiol Biotechnol 3:1–5
    [Google Scholar]
  15. Lee J.-K., Sung M.-H., Yoon K.-H., Yu J.-H., Oh T.-K. 1994; Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence. FEMS Microbiol Lett 119:137–146
    [Google Scholar]
  16. Martin I., Débarbouillé M., Ferrari E., Klier A., Rapoport G. 1987; Characterization of levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–184
    [Google Scholar]
  17. Martin I., Débarbouillé E., Klier A., Rapoport G. 1989; Induction and metabolite regulation of levanase synthesis in Bacillus subtilis.. J Bacteriol 171:1885–1892
    [Google Scholar]
  18. Martin I., Débarbouillé E., Klier A., Rapoport G. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Pelletier G., Frenette M., Vadeboncoeur C. 1995; Distribution of proteins similar to IIImanH and IIImanL of the Streptococcus salivarius phosphoenolpyruvate: mannose-glucose phosphotransferase system among oral and nonoral bacteria. J Bacteriol 177:2270–2275
    [Google Scholar]
  22. Pérez-Martínez G., Kok J., Venema G., van Dijl J. M., Smith H., Bron S. 1992; Protein export elements from Lactococcus lactis.. Mol Gen Genet 234:401–411
    [Google Scholar]
  23. Posno M., Leer R. J., van Luijk N., van Giezen M. J. F., Heuvelmans P. T. H. M., Lokman B. C., Pouwels P. H. 1991; Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828
    [Google Scholar]
  24. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  25. Randez-Gil F., Blasco A., Prieto J. A., Sanz P. 1995; DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast 11:1233–1240
    [Google Scholar]
  26. Reizer J., Ramseier T. M., Reizer A., Charbit A., Saier M. H. Jr 1996; Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative Nacetylgalactosamine metabolic pathway in Escherichia coli.. Microbiology 142:231–250
    [Google Scholar]
  27. Saier M. H. Jr Reizer J. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 174:1433–1438
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  30. Sanz P., Randez-Gil F., Prieto J. A. 1994; Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast. Yeast 10:1195–1202
    [Google Scholar]
  31. Stülke J., Martin-Verstraete I., Charrier V., Klier A., Deustcher J., Rapoport G. 1995; The HPr protein of the phospho-transferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177:6928–6936
    [Google Scholar]
  32. Thompson J., Chassy B. M. 1985; Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose phosphotransferase system in Streptococcus lactis.. J Bacteriol 162:224–234
    [Google Scholar]
  33. Veyrat A., Monedero V., Pérez-Martínez G. 1994; Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149
    [Google Scholar]
  34. Wehmeier U. F., Lengeler J. W. 1994; Sequence of the sor-operon for l-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta 1208:348–351
    [Google Scholar]
  35. Wöhrl B. M., Lengeler J. W. 1990; Cloning and physical mapping of the sor genes for l-sorbose transport and metabolism from Klebsiella pneumoniae.. Mol Microbiol 4:1557–1565
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-12-3469
Loading
/content/journal/micro/10.1099/13500872-142-12-3469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error