1887

Abstract

In order to analyse the involvement of the cAMP pathway in the regulation of gene expression in , we have examined the effect of cAMP on protein synthesis by using two-dimensional gel electrophoresis. cAMP had only a minor effect on the protein pattern of cells growing exponentially on glucose. However, it interfered with the changes in gene expression normally occurring upon glucose exhaustion in yeast cultures, maintaining a protein pattern typical of cells growing on glucose. This effect was accompanied by a delay before growth recovery on ethanol. We propose a model in which the cAMP-signalling pathway has a role in the maintenance of gene expression, rather than in the determination of a specific programme. A decrease of cAMP would then be required for metabolic transitions such as the diauxic phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-459
1996-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-459.html?itemId=/content/journal/micro/10.1099/13500872-142-3-459&mimeType=html&fmt=ahah

References

  1. Adams S. R., Harootunian A. T., Buechler Y. J., Taylor S. S., Tsien R. Y. 1991; Fluorescence ratio imaging of cyclic AMP in single cells. Nature 342:694–697
    [Google Scholar]
  2. Baroni M. D., Martegani E., Monti P., Alberghina L. 1989; Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae . Mol Cell Biol 9:2715–2723
    [Google Scholar]
  3. Bataillé N., Thoraval D., Boucherie H. 1988; Two-dimensional gel analysis of yeast proteins : application to the study of changes in the levels of major polypeptides of S. cerevisiae depending on the fermentable or non fermentable nature of the carbon source. Electrophoresis 9:774–780
    [Google Scholar]
  4. Bataillé N., Régnacq M., Boucherie H. 1991; Induction of a heat-shock-type response in Saccharomyces cerevisiae following glucose limitation. Yeast 7:367–378
    [Google Scholar]
  5. Bissinger P. H., Wieser R., Hamilton B., Ruis H. 1989; Control of Saccharomyces cerevisiae catalase gene (CTT1) expression by nutrient supply via the ras-cyclic AMP pathway. Mol Cell Biol 9:1309–1315
    [Google Scholar]
  6. Boorstein W. R., Craig E. A. 1990; Regulation of a yeast HSP70 by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553
    [Google Scholar]
  7. Boucherie H. 1985; Protein synthesis during transition and stationary phases under glucose limitation. J Bacteriol 161:385–392
    [Google Scholar]
  8. Boucherie H., Dujardin G., Kermogant M., Monribot C., Slonimsky P., Perrot M. 1995; Two dimensional protein map of Saccharomyces cerevisiae : construction of a gene-protein index. Yeast 11:601–613
    [Google Scholar]
  9. Boy-Marcotte E., Garreau H., Jacquet M. 1987; Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae . Yeast 3:85–93
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  11. Brindle P. K., Montminy M. R. 1992; The CREB family of transcription activators. Curr Opin Genet & Dev 2:199–204
    [Google Scholar]
  12. Camonis J. H., Kalékine M., Gondré B., Garreau H., Boy-Marcotte E., Jacquet M. 1986; Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae . EMBO J 5:375–380
    [Google Scholar]
  13. Cherry J. R., Johnson T. R., Dollard C., Shuster J. R., Denis C. L. 1989; Cyclic AMP dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409–419
    [Google Scholar]
  14. Daignan-Fornier B., Vallens M., Lemire B. D., Bolotin-Fukuhara M. 1988; In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivate adapted to yeast. Gene 62:45–54
    [Google Scholar]
  15. Denis C. L., Fontaine S. C., Chase D., Kemp B. E., Bemis L. T. 1992; ADR1 c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol Cell Biol 12:1507–1514
    [Google Scholar]
  16. Engelberg D., Klein C., Martinetto H., Struhl K., Karin M. 1994a; The UV response involving the Ras signalling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77:381–390
    [Google Scholar]
  17. Engelberg D., Zandi E., Parker C. S., Karin M. 1994b; The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 14:4929–4937
    [Google Scholar]
  18. François J. M., Schaftingen E. V., Hers H. G. 1984; The mechanism by which glucose increases fructose-2,6-bisphosphate concentration in Saccharomyces cerevisiae A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193
    [Google Scholar]
  19. François J., Eraso P., Gancedo C. 1987; Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373
    [Google Scholar]
  20. François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. 1992; GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae . EMBO J 11:87–96
    [Google Scholar]
  21. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090
    [Google Scholar]
  22. Hardy T. A., Huang D., Roach P. J. 1994; Interactions between cAMP dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae . J Biol Chem 269:27907–27913
    [Google Scholar]
  23. Kataoka T., Powers S., McGill C., Fasano O., Strathern J., Broach J., Wigler M. 1984; Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445
    [Google Scholar]
  24. Kinney A. J., Carman G. M. 1988; Phosphorylation of the yeast phosphatidylserine synthase in vivo and in vitro by cyclic AMP-dependent protein kinase. Proc Natl Acad SciUSA 857962–7966
    [Google Scholar]
  25. Klein C., Struhl K. 1994; Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14:1920–1928
    [Google Scholar]
  26. Lewis J. G., Northcott C. J., Learmonth R. P., Attfield P. V., Watson K. 1993; The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae . J Gen Microbiol 139:835–839
    [Google Scholar]
  27. Marchler G., Schüller C., Adam G., Ruis H. 1993; A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003
    [Google Scholar]
  28. Matsumoto K., Uno I., Ishikawa T. 1985; Genetic analysis of the role of the cAMP in yeast. Yeast 1:15–24
    [Google Scholar]
  29. Russel M., Bradshaw-Rouse J., Markwardt D., Heideman W. 1993; Changes in gene expression in the Ras/adenylate cyclase system of S. cerevisiae: correlation with cAMP levels and growth. Mol Biol Cell 4:757–765
    [Google Scholar]
  30. Tanaka K., Matsumoto K., Toh-e A. 1988; Dual regulation of the expression of the polyubiquitin gene by cAMP and heat shock in yeast. EMBO J 7:495–502
    [Google Scholar]
  31. Tatchell K. 1993; RAS genes in the budding yeast Saccharomyces cerevisiae . Signal Transduction. Prokaryotic and Simple Eucaryotic Systems147–188 Kurjan J., Taylor B. L. San Diego: Academic Press;
    [Google Scholar]
  32. Thevelein J. M. 1984; Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59
    [Google Scholar]
  33. Thevelein J. M. 1994; Signal transduction in yeast. Yeast 10:1753–1790
    [Google Scholar]
  34. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  35. Toda T., Cameron S., Sass P., Zoller M., Wigler M. 1987; Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
    [Google Scholar]
  36. Tokiwa G., Tyers M., Volpe T., Futcher B. 1994; Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342–345
    [Google Scholar]
  37. Van Aelst L., Boy-Marcotte E., Camonis J. H., Thevelein J. M., Jacquet M. 1990; The C-terminal part of the CDC25 gene product plays a key role for signal transduction in the glucose-induced modulation of the cAMP level in Saccharomyces cerevisiae . Eur J Biochem 193:675–680
    [Google Scholar]
  38. Van Der Plaat J. B. 1974; Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in bakers’ yeast. Biochem Biophys Res Commun 56:580–587
    [Google Scholar]
  39. Watson C. D., Berry D. R. 1977; Fluctuations in cAMP levels during the cell cycle of Saccharomyces cerevisiae . FEMS Microbiol Lett 1:175–178
    [Google Scholar]
  40. Wilson R. R., Renault G., Jacquet M., Tatchell K. 1993; The pde2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase which protects the cell from extracellular cAMP. FEBS Lett 325:191–195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-459
Loading
/content/journal/micro/10.1099/13500872-142-3-459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error