1887

Abstract

A 4·0 kb region of AM1 DNA which complements three mutants unable to convert acetyl-CoA to glyoxylate (and therefore defective in the assimilation of methanol and ethanol) has been isolated and sequenced. It contains two ORFs and the 3′-end of a third one. The mutations in all three mutants mapped within the first ORF, which was designated ; it encodes a protein having similarity with methylmalonyl- CoA mutase. However, methylmalonyl-CoA mutase was measured in extracts of one of the mutants and the specific activity was found to be similar to that in extracts of wild-type cells. Furthermore, although the predicted gene product has the proposed cobalamin-binding site, it does not contain a highly conserved sequence (RIARNT) which is present in all known methylmalonyl- CoA mutases; meaA may therefore encode a novel vitamin-B-dependent enzyme. The predicted polypeptide encoded by the second ORF did not have similarity with any known proteins. The partial ORF encoded a protein with similarity with the 3-oxoacyl-[acyl-carrier-protein] reductases; it was not essential for growth on methanol or ethanol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-675
1996-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-675.html?itemId=/content/journal/micro/10.1099/13500872-142-3-675&mimeType=html&fmt=ahah

References

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. 1967; Minature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 57321–326
    [Google Scholar]
  2. Allen L. N., Hanson R. S. 1985; Construction of broad host range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Anthony C. 1982 The Biochemistry of Methjlotrophs London: Academic Press;
    [Google Scholar]
  5. Bellion E., Hersh L. B. 1972; Methylamine metabolism in a Pseudomonas species. Arch Biochem Biophys 153:368–374
    [Google Scholar]
  6. Birch A., Leiser A., Robinson J. A. 1993; Cloning, sequencing and expression of the gene encoding methylmalonyl CoA mutase from Streptomyces cinnamonensis . J Bacteriol 175:3511–3519
    [Google Scholar]
  7. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  8. Blackmore M. A., Quayle J. R. 1970; Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J 118:53–59
    [Google Scholar]
  9. Bolbot J. A., Anthony C. 1980a; The metabolism of pyruvate by the facultative methylotroph Pseudomonas AM1. J Gen Microbiol 120:233–244
    [Google Scholar]
  10. Bolbot J. A., Anthony C. 1980b; The metabolism of 1,2- propanediol by the facultative methylotroph Pseudomonas AM1. J Gen Microbiol 120:245–254
    [Google Scholar]
  11. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL-1 Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–379
    [Google Scholar]
  12. Chistoserdova L. V., Lidstrom M. E. 1994a; Genetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation and physiological effect of glyA, the gene for serine hydroxymethyltransferase. J Bacteriol 176:6759–6763
    [Google Scholar]
  13. Chistoserdova L. V., Lidstrom M. E. 1994b; Genetics of the serine cycle in Methjlobacterium extorquens AM1: identification, sequence and mutation of three new genes involved in C1 assimilation, orf4 mtkA and mtkB . J Bacteriol 176:7398–7404
    [Google Scholar]
  14. Clark-Curtiss J. E., Curtiss E. I. 1983; Analysis of recombinant DNA using Escherichia coli minicells. Methods Ensymol 101:347–362
    [Google Scholar]
  15. Crane A. M., Jansen R., Andrews E. R., Ledley F. D. 1992; Cloning and expression of a mutant methylmalonyl CoA mutase with altered cobalamin affinity that causes mutmethylmalonic aciduria. J Clin Invest 89:385–391
    [Google Scholar]
  16. Cronan J. E., Rawlings M. 1992; The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthesis genes. J Biol Chem 267:5751–5754
    [Google Scholar]
  17. Dawson A., Southgate G., Goodwin P. M. 1990; Regulation of methanol and methylamine dehydrogenases in Methjlophilus methylotrophus . FEMS Microbiol Lett 68:93–96
    [Google Scholar]
  18. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  19. Drennan C. L., Matthews R. G., Ludwig M. L. 1994; Cobala- min-dependent methionine synthase : the structure of a methyl- cobalamin-binding fragment and implications for other B12- dependent enzymes. Curr Opin Struct Biol 4:919–929
    [Google Scholar]
  20. Dunstan P. M., Anthony C. 1973; Microbial metabolism of C1 and C2 compounds. The role of acetate during growth of Pseudomonas AM1 on C1 compounds, ethanol and β-hydroxy- butyrate. Biochem J 132:797–801
    [Google Scholar]
  21. Dunstan P. M., Anthony C, Drabble W. T. 1972a; Microbial metabolism of C1 and C2 compounds: the involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochem J 128:99–106
    [Google Scholar]
  22. Dunstan P. M., Anthony C., Drabble W. T. 1972b; Microbial metabolism of C1 and C2 compounds: the role of glyoxylate, glycollate and acetate in the growth of Pseudomonas AM1 on ethanol and on C1 compounds. Biochem J 128:107–115
    [Google Scholar]
  23. Eggink G., Engel H., Meijer W. G., Otten J., Kingma J., Witholt B. 1988; Alkane utilisation in Pseudomonas oleovorans . J Biol Chem 263:13400–13405
    [Google Scholar]
  24. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci USA 761648–1652
    [Google Scholar]
  25. Ford S., Page M. D., Anthony C. 1985; The role of a methanol dehydrogenase modifier protein and aldehyde dehydrogenase in the growth of Pseudomonas AM1 on 1,2-propanediol. J Gen Microbiol 131:2173–2182
    [Google Scholar]
  26. Fulton G. L., Nunn D. N., Lidstrom M. E. 1984; Molecular cloning of a malyl CoA lyase gene from Pseudomonas sp. strain AM1, a facultative methylotroph. J Bacteriol 160:718–723
    [Google Scholar]
  27. Goodwin P. M. 1990; Assay of assimilatory enzymes in crude extracts of some serine pathway methylotrophs. Methods Ensymol 188:361–365
    [Google Scholar]
  28. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  29. Jansen R., Kalousek F., Fenton W. A., Rosenberg L. E., Ledley F. D. 1989; Cloning of full length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics 4:198–205
    [Google Scholar]
  30. Johnson P. A., Quayle J. R. 1964; Microbial growth on C1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol grown Pseudomonas AM1. Biochem J 93:281–290
    [Google Scholar]
  31. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram negative bacteria. Gene 70:191–197
    [Google Scholar]
  32. Knauf V. C., Nester E. W. 1982; Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54
    [Google Scholar]
  33. Kortstee G. J. J. 1981; The second part of the icl serine pathway. In Microbial Growth on C1 Compounds211–219 Dalton H. London: Heyden & Son;
    [Google Scholar]
  34. Ledley F. D., Lumetta M., Nguyen P. N., Kohlhouse J. F., Allen R. H. 1988; Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. Proc Natl Acad Sci USA 853518–3521
    [Google Scholar]
  35. MacLennan D. G., Ousby J. C., Vasey R. B., Cotton N. T. 1971; The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture. J Gen Microbiol 69:395–404
    [Google Scholar]
  36. Marsh E. N. G., Holloway D. E. 1992; Cloning and sequencing of glutamate mutase component S from Clostridium tetanomorphum: homologies with other cobalamin-dependent enzymes. FEBS Lett 310:167–170
    [Google Scholar]
  37. Marsh E. N., Mckie N., Davis N. K., Leadlay P. F. 1989; Cloning and structural characterization of the genes coding for adenosylcobalamin-dependent methylmalonyl CoA mutase from Propionibacterium shermann . Biochem J 260:345–352
    [Google Scholar]
  38. Mishra A. K., Tiwari D. N. 1985; Enhancement of NTG mutagenesis by chloramphenicol in Gloeotrichia ghosei . Mol & Gen Genet 201:351–352
    [Google Scholar]
  39. Peel D., Quayle J. R. 1961; Microbial growth on C1 compounds. 1. Isolation and characterisation of Pseudomonas AM1. Biochem J 81:465–469
    [Google Scholar]
  40. Platt T. 1986; Transcriptional termination and the regulation of gene expression. Amu Rev Biochem 55:339–372
    [Google Scholar]
  41. Roy I., Leadlay P. F. 1992; Physical map location of the new Escherichia coli gene sbm . J Bacteriol 174:5763–5764
    [Google Scholar]
  42. Salem A. R., Hacking A. J., Quayle J. R. 1973a; Cleavage of malyl-Coenzyme A into acetyl Coenzyme A and glyoxylate by Pseudomonas AM1 and other C -unit-utilizing bacteria. Biochem T 136:89–96
    [Google Scholar]
  43. Salem A. R., Wagner C., Hacking A. J., Quayle J. R. 1973b; The metabolism of lactate and pyruvate by Pseudomonas AM1. J Gen Microbiol 76:375–388
    [Google Scholar]
  44. Salem A. R., Hacking A. J., Quayle J. R. 1974; Lack of malyl- CoA lyase in a mutant of Pseudomonas AM1. J Gen Microbiol 81:525–527
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  47. Shimizu S., Ueda S., Sato K. 1984; Physiological role of vitamin B12 in a methanol utilising bacterium, Protaminobacter ruber . In Microbial Growth on C1 Compounds113–117 Crawford R. L., Hanson R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilisation system for in vivo genetic engineering; transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  49. Slabas A. R., Chase D., Nishida I., Murata N., Sidebottom C., Safford R., Sheldon P. S., Kekwick R. G., Hardie D. G., Mackintosh R. W. 1992; Molecular cloning of higher plant 3- oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG gene product of the nitrogen fixing soil bacterium Rhizobium meliloti . Btochem J 283:321–326
    [Google Scholar]
  50. Stone S., Goodwin P. M. 1989; Characterization and comple-mentation of mutants of Methylobacterium AM1 which are defective in C1 assimilation. J Gen Microbiol 135:227–235
    [Google Scholar]
  51. Tatra P. K., Goodwin P. M. 1985; Mapping of some genes involved in C1 metabolism in the facultative methylotroph Methylobacterium sp. strain AM1 (Pseudomonas AM1). Arch Microbiol 143:169–177
    [Google Scholar]
  52. Wilkemeyer M. F., Crane A. M., Led ley F. D. 1990; Primary structure and activity of mouse methylmalonyl CoA mutase. Btochem J 271:449–455
    [Google Scholar]
  53. Zagalak B., Retey J., Sund H. 1974; Studies on methylmalonyl CoA mutase from Propionibacterium shermanii . Eur J Biochem 44:529–534
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-675
Loading
/content/journal/micro/10.1099/13500872-142-3-675
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error