1887

Abstract

Mutagenesis of ISP5230 and selection for -aminobenzoic acid-dependent growth in the presence of sulfanilamide yielded mutants (VS519 and VS620) that continued to produce chloramphenicol (Cm), although with increased medium dependence. Transforming the mutants with pDQ102 or pDQ103, which carried a -complementing fragment from ISP5230 in alternative orientations, restored uniformly high Cm production in VS620, but did not alter the medium dependence of Cm production in VS519. The cloned DNA fragment was subcloned and trimmed to the minimum size conferring complementation. The resulting 2.8 kb HI-I fragment was sequenced. Codon preference analysis showed one complete ORF encoding a polypeptide of 670 amino acids. Comparison of the deduced amino acid sequence with database proteins indicated that the N- and C-terminal regions resembled PabA and PabB, respectively, of numerous bacteria. The gene product showed overall sequence similarity to the product of a fused gene associated with secondary metabolism in . Insertion of an apramycin resistance gene into cloned in a segregationally unstable vector and replacement of the chromosomal with the disrupted copy lowered sulfanilamide resistance from 25 to 5 μg ml and blocked Cm production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1345
1996-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1345.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1345&mimeType=html&fmt=ahah

References

  1. Aidoo D.A. approaches to the cloning of genes for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 1989 PhD thesis, Dalhousie University, Halifax, NS, Canada;
    [Google Scholar]
  2. Aidoo D.A., Barrett K., Vining L.C. Plasmid transformation of Streptomyces veneyuelae: modified procedures used to introduce the genes for y-aminobenzoate synthetase. J Gen Microbiol 1990; 136:657–662
    [Google Scholar]
  3. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol 1990; 215:403–410
    [Google Scholar]
  4. Arhin F.F., Vining L.C. Organization of the genes encoding p-aminobenzoic acid synthetase from Streptomyces lividans 1326. Gene 1993; 126:129–133
    [Google Scholar]
  5. Atkinson L. A search for mutants of Streptomyces veneizuelae blocked in the synthesis of aromatic compounds due to mutations in glutamine amidotransferase genes 1987 MSc thesis, Dalhousie University, Halifax, NS, Canada;
    [Google Scholar]
  6. Baltz R.H. Mutagenesis in Streptomyces spp. In Manual of Industrial Microbiology and Biotechnology 1986 Edited by Demain A.L., Solomon N.A. Washington, DC: American Society for Microbiology; pp 184–190
    [Google Scholar]
  7. Carter P., Bedovelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using Ml3 vectors. Nucleic Acids Res 1985; 13:4431–4443
    [Google Scholar]
  8. Chater K.F., Hopwood D.A., Kieser T., Thompson C.J. Gene cloning in Streptomyces. Curr Top Microbiol Immunol 1982; 96:69–95
    [Google Scholar]
  9. Chatterjee S., Vining L.C., Westlake D.W.S. Nutritional requirements for chloramphenicol biosynthesis by Streptomyces venezuelae. Can J Microbiol 1983; 29:247–253
    [Google Scholar]
  10. Crawford I.P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol 1989; 43:567–600
    [Google Scholar]
  11. Criado L.M., Martin J.F., Gil J.A. Nucleotide sequence of the p-aminobenzoic acid synthetase gene of Streptomyces griseus IMRU 3570. Gene 1993; 126:123–128
    [Google Scholar]
  12. Delid V., Hopwood D.A., Friend E.J. Mutagenesis by N-methyl-IV'-nitro-IV-nitrosoguanidine. Mutation Res 1970; 9:167–182
    [Google Scholar]
  13. Denhardt D.T. A membrane filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 1966; 23:641–646
    [Google Scholar]
  14. Doull J., Ahmed Z., Stuttard C., Vining L.C. Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 1985; 131:97–104
    [Google Scholar]
  15. Feng R., Doolittle R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 1987; 25:351–360
    [Google Scholar]
  16. Gil J.A., Hopwood D.A. Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. Gene 1983; 25:119–132
    [Google Scholar]
  17. Gil J.A., Liras P., Naharro G., Villanueva J.R., Martin J.F. Regulation by aromatic amino acids of the biosynthesis of candicidin by Streptomyces griseus. J Gen Microbiol 1980; 118:189–195
    [Google Scholar]
  18. Goncharoff P., Nichols B.P. Evolution of aminobenzoate synthetases: nucleotide sequences of Salmonella typhimurium and Klebsiella aerogenes pabB. Mol Biol Evol 1988; 5:531–538
    [Google Scholar]
  19. Green J.M., Nichols B.P. -Aminobenzoate biosynthesis in Escherichia coli: purification of aminodeoxychorismate lyase and cloning of pabC. J Biol Chem 1991; 266:12971–12975
    [Google Scholar]
  20. Green J.M., Merkel W.K., Nichols B.P. Characterization and sequence of Escherichia coli pabC, the gene encoding aminodeoxychorismate lyase, a pyridoxal phosphate-containing enzyme. J Bacteriol 1992; 174:5317–5323
    [Google Scholar]
  21. Han L., Yang K., Ramalingam E., Mosher R.H., Vining L.C. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venevpielae ISP5230. Microbiology 1994; 140:3379–3389
    [Google Scholar]
  22. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580
    [Google Scholar]
  23. Henikoff S. Unidirectional deletion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 1984; 28:351–359
    [Google Scholar]
  24. Holmes D.S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 1981; 114:193–200
    [Google Scholar]
  25. Hopwood D.A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 1967; 31:373–403
    [Google Scholar]
  26. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate C.P., Smith C.P., Ward J.M., Schrempf H. Genetic Manipulation of Streptomyces 1985 A Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  27. Huang L.H., Pittard J. Genetic analysis of mutant strains of Escherichia coli requiring y>-aminobenzoic acid for growth. J Bacteriol 1967; 102:767–773
    [Google Scholar]
  28. Jones A., Francis M.M., Vining L.C., Westlake D.W.S. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting z-aminophenylalanine as a substrate. Can J Microbiol 1978; 24:238–244
    [Google Scholar]
  29. Kaplan J.B., Merkel W.K., Nichols B.P. Evolution of amidotransferase genes: nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marces-cens. J Mol Biol 1985; 183:451–462
    [Google Scholar]
  30. Karger B.D., Jessee J. Preparation of single-strand DNA from phagemids. Focus 1990; 12:28–29
    [Google Scholar]
  31. Kieser T. Factors affecting the isolation of cccDNA from Streptomyces lividans and Escherichia coli. Plasmid 1984; 12:19–36
    [Google Scholar]
  32. Larson J.L., Hershberger C.L. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 1986; 15:199–209
    [Google Scholar]
  33. Liao X., Vining L.C., Doull J.L. Physiological control of trophophase-idiophase separation in streptomycete cultures producing secondary metabolites. Can J Microbiol 1995; 41:309–315
    [Google Scholar]
  34. Lingens F., Keller E. Zur Biosynthese von Phenylalanin und Tyrosin. Arogensä 1983 ure ein neues Zwischenprodukt. Naturwissenschaften 70, 115 and 118
    [Google Scholar]
  35. MacNeil D.J., Gewain K.M., Rudy C.L., Dezeny G., Gibbons P.H., MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 1992; 111:61–68
    [Google Scholar]
  36. Malik V.S., Vining L.C. Metabolism of chloramphenicol by the producing organism. Can J Microbiol 1970; 16:173–179
    [Google Scholar]
  37. Mead D.A., Kemper B. Chimeric single-stranded DNA phage-plasmid cloning vectors. In Vectors 1988 Edited by Rodriguez R.L., Denhardt D.T. Toronto: Butterworth; pp 85–102
    [Google Scholar]
  38. Nichols B.P., Seibard A.M., Doktor S.Z. para-Aminobenzoate biosynthesis from chorismate occurs in two steps. J Biol Chem 1989; 264:8597–8601
    [Google Scholar]
  39. Paradkar A.S., Jensen S.E. Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J Bacteriol 1995; 177:1307–1314
    [Google Scholar]
  40. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  42. Slock J., Stahly D.P., Han C.-Y., Six E.W., Crawford I.P. An apparent folic acid biosynthesis Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis ofywra-aminobenzoic acid and the dihydropteroate synthetase gene. J Bacteriol 1990; 172:7211–7226
    [Google Scholar]
  43. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  44. Stanzak R., Matsushima P., Baltz R.H., Rao R.N. Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythreus. Bio/Technology 1986; 4:229–232
    [Google Scholar]
  45. Stuttard C. Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by SV1 and SV2. J Gen Microbiol 1982; 128:115–121
    [Google Scholar]
  46. Teng C.Y., Ganem B., Doktor S., Nichols B.P., Bhatnagar R.K., Vining L.C. Total biosynthesis of 4-amino-4-deoxychorismic acid: a key intermediate in the biosynthesis ofp-aminobenzoic acid and L-p-aminophenylalanine. J Am Chem Soc 1985; 107:5008–5009
    [Google Scholar]
  47. Tinoco I. Jr, Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 1973; 246:40–41
    [Google Scholar]
  48. Tran P.V., Bannor T.A., Doktor S.Z., Nichols B.P. Chromosomal organization and expression of Escherichia coli pabA. J Bacteriol 1990; 172:397–410
    [Google Scholar]
  49. Vining L.C., Stuttard C. Chloramphenicol. In Genetics and Biochemistry of Antibiotic Production 1994 Edited by Vining L.C., Stuttard C. Boston: Butterworth-Heinemann; pp 505–530
    [Google Scholar]
  50. Wright F., Bibb M.J. Codon usage in the G + C-rich Streptomyces genome. Gene 1992; 113:55–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1345
Loading
/content/journal/micro/10.1099/13500872-142-6-1345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error