1887

Abstract

Recently, the subunit composition of class A aspartate transcarbamoylases (ATCases) in fluorescent pseudomonads has been clarified. We present evidence that distribution of this type of ATCase may be more widespread than at first suspected. Bacterial ATCases exist in three forms: class A (molecular mass # 450-500 kDa); class B, typified by ATCase (# 300 kDa); and class C, typified by ATCase (# 100 kDa). Using gradient gel electrophoresis with activity-staining to scan bacterial sonicates, we report the existence of six more class A ATCases. We have purified one of these, ATCase, and found its subunit composition to be similar to that of the pseudomonad ATCases. Two of these ATCases come from bacteria outside the γ-subgroup of the Proteobacteria, one from the α-subgroup and one from , a species phylogenetically remote from the Proteobacteria. Unexpectedly, three bacterial species, closely related to the fluorescent pseudomonads and acinetobacters, have ATCases of 100 kDa (class C). One of these, (formerly has been purified and found to be a homotrimer of 35 kDa polypeptide chains. We believe this is the first time that class C ATCases have been reported in Gram-negative bacteria. A distinctive cluster in the γ-3 subgroup of the Proteobacteria is formed by the enteric bacteria and their relatives. So far only class B ATCases have been reported in this group. The evolutionary implications of these findings are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1873
1996-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1873.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1873&mimeType=html&fmt=ahah

References

  1. Arcus A. C. Protein analysis by electrophoretic molecular sieving in a gel of graded porosity. Anal Biochem (1970); 37:53–63
    [Google Scholar]
  2. Bergh S.T., Evans D. E. Subunit structure of class A aspartate transcarbamoylase from Pseudomonas fluorescens. Proc Natl Acad Set USA (1993); 90:9819–9822
    [Google Scholar]
  3. Bethell M. R., Jones M. E. Molecular size and feedback-regulation characteristics of bacterial aspartate transcarbamylases. Arch Biochem Biophys (1969); 134:352–365
    [Google Scholar]
  4. Brabson J. S., Switzer R. L. Purification and properties of Bacillus subtilis aspartate transcarbamylase. J Biol Chem (1975); 250:8664–8669
    [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem (1976); 72:248–254
    [Google Scholar]
  6. Byng G. S., Berry A., Jensen R. A. Evolution of aromatic biosynthesis and functional phylogenetic positioning of Azomonas, Azotobacter and rRNA group I pseudomonads. Arch Microbiol (1986); 144:222–227
    [Google Scholar]
  7. Chang T.-Y. Aspartate transcarbamoylase from Streptococcus faecalis. Purification, properties and nature of an allosteric activator site. Biochemistry (1974); 13:629–638
    [Google Scholar]
  8. Davidson J. N., Chen C. C., Jamison R. S., Musmanno L. A., Kern C. B. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. BioEssays (1993); 15:157–164
    [Google Scholar]
  9. DeSmedt J., Bauwens M., Tygat R., Deley J. Intra- and intergenic similarities of ribosomal ribonucleic acid cistrons of free- living nitrogen-fixing bacteria. Int J Syst Bacteriol (1980); 30:106–112
    [Google Scholar]
  10. Foltermann K. F., Wild J. R., Zink D. L., O’Donovan G. A. Regulatory variance of aspartate transcarbamoylase among strains of Yersinia enterocolitica and Yersinia enterocolitica-Wkeorganisms.. Curr Microbiol (1981); 6:43–47
    [Google Scholar]
  11. Gerhart J. C., Holoubek H. The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem (1967); 242:2886–2892
    [Google Scholar]
  12. Grayson J. E., Yon R. J., Butterworth P. J. Wheat germ aspartate transcarbamylase, Purification and cold lability.. Biochem J (1979); 183:239–245
    [Google Scholar]
  13. Kntrowitz E. R., Lipscomb W. N. Escherichia coli aspartate transcarbamoylase: the molecular basis for a concerted allosteric transition. Trends Biochem Sei (1990); 15:53–59
    [Google Scholar]
  14. Ke H.-M., Honzatco R. B., Lipscomb W. N. Structure of the unligated aspartate carbamoyl transferase of Escherichia coli at 2.6 Ä resolution. Proc Natl Acad Sei USA (1984); 81:4037–4040
    [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (1970); 227:680–685
    [Google Scholar]
  16. Murray R. G. E. Deinococcaceae Brookes and Murray 1981, 356VP. In Bergey’s Manual of Systematic Bacteriology (1986); Vol. 21035–1043 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. altimore: Williams & Wilkins;
    [Google Scholar]
  17. O'Donovan G. A., Shanley M. Pyrimidine metabolism in Pseudomonas. Paths to Pyrimidines: An International Newsletter (1995); 3:49–59
    [Google Scholar]
  18. Robey E. A., Schachman H. K. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamylase. Proc Natl Acad Sei USA (1985); 82:361–365
    [Google Scholar]
  19. Schurr M. J., Vickrey J. F., Kumar A. P., Campbell A. L., Cunin R., Benjamin R. C., Shanley M. S., O’Donovan G. A. Aspartate transcarbamoylase genes from Pseudomonas putida-requirement for an inactive dihydro-orotase for assembly into the dodecameric holoenzyme.. J Bacteriol (1995); 177:1751–1759
    [Google Scholar]
  20. Shepherdson M., McPhail D. Purification of aspartate transcarbamoylase from Pseudomonas syringae. FEMS Microbiol Lett (1993); 114:201–206
    [Google Scholar]
  21. Souciet J. L., Nagy M., Le Gouar M., Lacroute F., Potier S. Organisation of the URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoyl phosphate synthetase-aspartate transcarbamoylase complex. Gene (1989); 79:59–70
    [Google Scholar]
  22. Switzer R. L., Quinn C. L. De novo pyrimidine nucleotide synthesis. In Bacillus subtilis and Other Gram-positive Bacteria (1993) Edited by Sonenshein A. L., Hoch J. A., Losick R. ashington, DC: American Society for Microbiology; pp 343–358
    [Google Scholar]
  23. Wild J. R., Foltermann K. J., O’Donovan G. A. Regulatory divergence of aspartate transcarbamoylases within the Enterobacteriaceae. Arch Biochem Biophys (1980); 201:506–517
    [Google Scholar]
  24. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zahlen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol (1985); 6:25–33
    [Google Scholar]
  25. Woese C. R. Bacterial evolution. Microbiol Rev (1987); 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1873
Loading
/content/journal/micro/10.1099/13500872-142-7-1873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error