1887

Abstract

The operon of 2.4.1 encodes the β- and α-polypeptides of the B875 complex, the L and M polypeptides of the reaction centre and the gene product. A previous report from the authors′ laboratory indicated the potential existence of a 20-codon open reading frame ( now designated ) located immediately upstream of the structural gene. It is now demonstrated that is translated and that the specific levels or nature of the rare codons within affect the expression of Using a series of -specific mutations, both as translational fusions and incorporated into the genome in single copy, evidence has been obtained that translation initiation through may be essential to translation of . Further, the abundance, quality and distribution of rare codons within may serve to ‘gate’ the entry of ribosomes at . The data also suggest that translation of is uncoupled from that of with the latter capable of being produced in excess of the former. It is also revealed that the secondary structure at the 5′ end of the large and small transcripts may play a role in mRNA stability and that stability of the small transcript is independent of translation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-2057
1996-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-2057.html?itemId=/content/journal/micro/10.1099/13500872-142-8-2057&mimeType=html&fmt=ahah

References

  1. Aksoy S., Squires C.L., Squires C. 1984; Translational coupling of the trpB and trpA genes in the Escherichia coli tryptophan operon. J Bacterial 157:363–367
    [Google Scholar]
  2. Barz W.P., Oesterhelt D. 1994; Photosynthetic deficiency of a pufX deletion mutant of Rhodobacter sphaeroides is suppressed by point mutations in the light-harvesting complex genes pufB or puf A . Biochemistry 33:9741–9742
    [Google Scholar]
  3. Belasco J.G., Beatty J.T., Adams C.W., Gabian A.V., Cohen S.N. 1985; Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell 40:171–181
    [Google Scholar]
  4. Davis J., Donohue T.J., Kaplan S. 1988; Construction, characterization, and complementation of a Puf mutant of Rhodobacter sphaeroides . J Bacteriol 170:320–329
    [Google Scholar]
  5. DeHoff B.S., Lee J.K., Donohue T.J., Gumport R.I., Kaplan S. 1988; In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. J Bacteriol 170:4681–4692
    [Google Scholar]
  6. Dryden S.C., Kaplan S. 1990; Location and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides . Nucleic Acids Res 18:7267–7277
    [Google Scholar]
  7. Dubnau D. 1984; Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-stretogramin B antibiotics. Crit Rev Biochem 16:103–132
    [Google Scholar]
  8. Emory S.A., Bouvet P., Belasco J.G. 1992; A 5-terminal stem-loop structure can stabilize mRNA in Escherichia coli . Genes Dev 6:135–148
    [Google Scholar]
  9. Farabaugh P.J. 1978; Sequence of the lad gene. Nature 274:765–769
    [Google Scholar]
  10. Farchaus J.W., Barz W.P., Grunberg H., Oesterhelt D. 1992; Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides . EMBO J 11:2779–2788
    [Google Scholar]
  11. Gish K., Yanofsky C. 1995; Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli . J Bacteriol 177:7245–7254
    [Google Scholar]
  12. Gold L., Stormo G. 1987; Translational initiation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1302–1307 Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Gong L., Lee J.K., Kaplan S. 1994; The Q gene of Rhodobacter sphaeroides-. its role in puf operon expression and spectral complex assembly. J Bacteriol 176:2946–2961
    [Google Scholar]
  14. Gouy M., Gautier C. 1982; Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074
    [Google Scholar]
  15. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R. 1981; Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9:243–274
    [Google Scholar]
  16. Grosjean H., Fiers W. 1982; Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209
    [Google Scholar]
  17. Harms E., Higgins E., Chen I.-J.W., Umbarger H.E. 1988; Translational coupling between the ilvD and ilvA genes of Escherichia coli . J Bacteriol 170:4798–4807
    [Google Scholar]
  18. Hess S., Visscher K., Ulander J., Pullerits T., Jones M.R., Hunter C.N., Sundström I.Y. 1993; Direct energy transfer from the peripheral LH2 antenna to the reaction center in a mutant of Rhodobacter sphaeroides that lacks the core LHI antenna. Biochemistry 32:10314–10322
    [Google Scholar]
  19. Horinouchi S., Weinsblum B. 1980; Post-transcriptional modification of mRNA conformation: mechanism that regulates erythro-mycin-induced resistance. Proc Natl Acad Sci USA 777079–7083
    [Google Scholar]
  20. Keen N.T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gramnegative bacteria. Gene 70:191–197
    [Google Scholar]
  21. Kiley P.J., Kaplan S. 1988; Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides . Microbiol Rev 52:50–69
    [Google Scholar]
  22. Kiley P.J., Donohue T.J., Havelka W.A., Kaplan S. 1987; DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides . J Bacteriol 169:742–750
    [Google Scholar]
  23. Klug G., Cohen S.N. 1991; Effects of translation on degradation of mRNA segments transcribed from the polycistronic puf operon of Rhodobacter capsulatus . J Bacteriol 173:1478–1484
    [Google Scholar]
  24. Klug G., Adams C.W., Belasco J., Doerege B., Cohen S.N. 1987; Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO J 6:3515–3520
    [Google Scholar]
  25. Konigsberg W., Godson G.N. 1983; Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli . Proc Natl Acad Sci USA 80687–691
    [Google Scholar]
  26. Kordes E., Jack S., Fritsch J., Bosch J.F., Klug G. 1994; Cloning of a gene involved in rRNA precursor processing and 23S rRNA cleavage in Rhodobacter capsulatus . J Bacteriol 176:1121–1127
    [Google Scholar]
  27. Lee J.K., DeHoff B.S., Donohue T.J., Gumport R.I., Kaplan S. 1989; Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. J Biol Chem 264:19354–19365
    [Google Scholar]
  28. Leskiw B.K., Bibb M.J., Chater K.F. 1991; The use of a rare codon specifically during development?. Mol Microbiol 5:2861–2867
    [Google Scholar]
  29. Little S., Hyde S., Campbell C.J., Lilley R.J., Robinson M.K. 1989; Translational coupling in the threonine operon of Escherichia coli K-12. J Bacteriol 171:3518–3522
    [Google Scholar]
  30. McGlynn P., Hunter C.N., Jones M.R. 1994; The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett 349:349–353
    [Google Scholar]
  31. Meinhardt S.W., Kiley P.J., Kaplan S., Crofts A.R., Haryama S. 1985; Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch Biochem Biophys 236:130–139
    [Google Scholar]
  32. Misra R., Reeves P. 1985; Intermediates in the synthesis of TolC protein include an incomplete peptide stalled at a rare Arg codon. Eur J Biochem 152:151–155
    [Google Scholar]
  33. Neidle E.L., Kaplan S. 1992; 5 -Aminolevulinic acid availability and control of spectral complex formation in HemA and HemT mutants of Rhodobacter sphaeroides . J Bacteiol 175:6444–6454
    [Google Scholar]
  34. Neidle E.L., Kaplan S. 1993; Expression of the Rhodobacter sphaeroides hem A and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175:2292–2303
    [Google Scholar]
  35. Oppenheim D., Yanofksy C. 1980; Translational coupling during expression of the tryptophan operon in Escherichia coli . Genetics 95:785–795
    [Google Scholar]
  36. Pierrat B., Lacroute F., Losson R. 1993; The 5’ untranslated region of the PPR1 regulatory gene dictates rapid mRNA decay in yeast. Gene 131:43–51
    [Google Scholar]
  37. Riggs D., Artz S. 1984; The hisD-hisC gene border of the Salmonella typhimurium histidine operon. Mol Gen Genet 196:526–529
    [Google Scholar]
  38. Sambrook J., Fritsch E.F., Maniatias T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  40. SchUümperli D., Mckenny K., Sobieski D.A., Rosenberg M. 1982; Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Cell 30:865–871
    [Google Scholar]
  41. Sedman S.A., Gelembiuk G.W., Mertz J.E. 1990; Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5’ cap. J Virol 64:453–457
    [Google Scholar]
  42. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:37–45
    [Google Scholar]
  43. Sistrom W.R. 1962; The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides . J Gen Microbiol 28:607–616
    [Google Scholar]
  44. Sockett R.E., Donohue T.J., Varga A.R., Kaplan S. 1988; Control of photosynthetic membrane assembly in R hodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171:436–446
    [Google Scholar]
  45. Sprengel R., Reiss B., Schleif R.F. 1985; Translationally coupled initiation of protein synthesis in Bacillus subtilis . Nucleic Acids Res 13:893–909
    [Google Scholar]
  46. Stoner C.M., Schleif R.F. 1982; Is the amino acid but not the nucleotide sequence of the Escherichia coli araC gene conserved?. J Mol Biol 154:649–652
    [Google Scholar]
  47. Tai T.N., Havelka W.A., Kaplan S. 1988; A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid 19:175–188
    [Google Scholar]
  48. Tichy H.V., Oberle B., Stiehle H., Schiltz E., Drews G. 1989; Genes downstream from pucB and pucA are essential for formation of the B800-850 complex of R hodobacter capsulatus . J Bacteriol 171:4914–4922
    [Google Scholar]
  49. Van Niel C.B. 1944; The culture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8:1–118
    [Google Scholar]
  50. Varga A.R., Kaplan S. 1993; Synthesis and stability of reaction center polypeptides and implications for reaction center assembly in Rhodobacter sphaeroides . J Biol Chem 26:19842–19850
    [Google Scholar]
  51. Von Gabain A., Belasco J.G., Schottel J.L., Chang A.C., Cohen S.N. 1983; Decay of mRNA in Escherichia coli\ investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci USA 80653–657
    [Google Scholar]
  52. Zhu Y.S., Kiley P.J., Donohue T.J., Kaplan S. 1986; Origin of the mRNA stoichiometry of the puf operon in Rhodobacter sphaeroides . J Biol Chem 261:10366–10374
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-2057
Loading
/content/journal/micro/10.1099/13500872-142-8-2057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error