1887

Abstract

The spirochaete bacterium is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of ’s normal growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000027
2015-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/516.html?itemId=/content/journal/micro/10.1099/mic.0.000027&mimeType=html&fmt=ahah

References

  1. Aberer E. D. P. H., Duray P. H. (1991). Morphology of Borrelia burgdorferi: structural patterns of cultured borreliae in relation to staining methods. J Clin Microbiol 29, 764772.[PubMed] [Google Scholar]
  2. Aberer E., Kersten A., Klade H., Poitschek C., Jurecka W. (1996). Heterogeneity of Borrelia burgdorferi in the skin. Am J Dermatopathol 18, 571579. [View Article][PubMed] [Google Scholar]
  3. Al-Robaiy S., Dihazi H., Kacza J., Seeger J., Schiller J., Huster D., Knauer J., Straubinger R. K. (2010). Metamorphosis of Borrelia burgdorferi organisms RNA, lipid and protein composition in context with the spirochetes’ shape. J Basic Microbiol 50 (Suppl. 1), S5S17. [View Article][PubMed] [Google Scholar]
  4. Alban P. S., Johnson P. W., Nelson D. R. (2000). Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi . Microbiology 146, 119127.[PubMed] [Google Scholar]
  5. Barbour A. G. (1984). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521525.[PubMed] [Google Scholar]
  6. Barbour A. G., Hayes S. F. (1986). Biology of Borrelia species. Microbiol Rev 50, 381400.[PubMed] [Google Scholar]
  7. Ben-Menachem G., Kubler-Kielb J., Coxon B., Yergey A., Schneerson R. (2003). A newly discovered cholesteryl galactoside from Borrelia burgdorferi . Proc Natl Acad Sci U S A 100, 79137918. [View Article][PubMed] [Google Scholar]
  8. Berndtson K. (2013). Review of evidence or immune evasion and persistent infection in Lyme disease. Int J Gen Med 6, 291306.[PubMed][CrossRef] [Google Scholar]
  9. Briers Y., Staubli T., Schmid M. C., Wagner M., Schuppler M., Loessner M. J. (2012). Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS ONE 7, e38514. [View Article][PubMed] [Google Scholar]
  10. Brorson O., Brorson S. H. (1997). Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection 25, 240246. [View Article][PubMed] [Google Scholar]
  11. Brorson O., Brorson S. H. (1998). A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS 106, 11311141. [View Article][PubMed] [Google Scholar]
  12. Bunikis I., Denker K., Ostberg Y., Andersen C., Benz R., Bergström S. (2008). An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4, e1000009. [View Article][PubMed] [Google Scholar]
  13. Domingue G. J. Sr, Woody H. B. (1997). Bacterial persistence and expression of disease. Clin Microbiol Rev 10, 320344.[PubMed] [Google Scholar]
  14. Dunham-Ems S. M., Caimano M. J., Eggers C. H., Radolf J. D. (2012). Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8, e1002532. [View Article][PubMed] [Google Scholar]
  15. Flemming H. C., Wingender J. (2010). The biofilm matrix. Nat Rev Microbiol 8, 623633.[PubMed] [Google Scholar]
  16. Garon C. F., Dorward D. W., Corwin M. D. (1989). Structural features of Borrelia burgdorferi the Lyme disease spirochete: silver staining for nucleic acids. Scanning Microsc Suppl 3, 109115.[PubMed] [Google Scholar]
  17. Glover W. A., Yang Y., Zhang Y. (2009). Insights into the molecular basis of L-form formation and survival in Escherichia coli . PLoS ONE 4, e7316. [View Article][PubMed] [Google Scholar]
  18. Harman M., Vig D. K., Radolf J. D., Wolgemuth C. W. (2013). Viscous dynamics of Lyme disease and syphilis spirochetes reveal flagellar torque and drag. Biophys J 105, 22732280. [View Article][PubMed] [Google Scholar]
  19. Hubálek Z., Halouzka J., Heroldová M. (1998). Growth temperature ranges of Borrelia burgdorferi sensu lato strains. J Med Microbiol 47, 929932. [View Article][PubMed] [Google Scholar]
  20. Hulínská D., Barták P., Hercogová J., Hancil J., Basta J., Schramlová J. (1994). Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients. Zentralbl Bakteriol 280, 348359. [View Article][PubMed] [Google Scholar]
  21. Huttunen M., Waris M., Kajander R., Hyypiä T., Marjomäki V. (2014). Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol 88, 51385151. [View Article][PubMed] [Google Scholar]
  22. Justice S. S., Hung C., Theriot J. A., Fletcher D. A., Anderson G. G., Footer M. J., Hultgren S. J. (2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101, 13331338. [View Article][PubMed] [Google Scholar]
  23. Justice S. S., Hunstad D. A., Cegelski L., Hultgren S. J. (2008). Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6, 162168. [View Article][PubMed] [Google Scholar]
  24. Kersten A., Poitschek C., Rauch S., Aberer E. (1995). Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi . Antimicrob Agents Chemother 39, 11271133. [View Article][PubMed] [Google Scholar]
  25. Kudryashev M., Cyrklaff M., Baumeister W., Simon M. M., Wallich R., Frischknecht F. (2009). Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol 71, 14151434. [View Article][PubMed] [Google Scholar]
  26. Lantos P. M., Auwaerter P. G., Wormser G. P. (2014). A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin Infect Dis 58, 663671. [View Article][PubMed] [Google Scholar]
  27. Lawrence C., Lipton R. B., Lowy F. D., Coyle P. K. (1995). Seronegative chronic relapsing neuroborreliosis. Eur Neurol 35, 113117. [View Article][PubMed] [Google Scholar]
  28. Li X. Z., Nikaido H. (2004). Efflux-mediated drug resistance in bacteria. Drugs 64, 159204. [View Article][PubMed] [Google Scholar]
  29. Mattman L. H. (2001).Cell Wall Deficient Forms – Stealth Pathogens, 3rd edn. Boca Raton, FL: CRC Press. [Google Scholar]
  30. McGee Z. A., Ratner H. B., Bryant R. E., Rosenthal A. S., Koenig M. G. (1972). An antibody-complement system in human serum lethal to L-phase variants of bacteria. J Infect Dis 125, 231242. [View Article][PubMed] [Google Scholar]
  31. Mead P. S. (2011). Global epidemiology of Borrelia burgdorferi infections. In Lyme Disease: an Evidence-based Approach, pp. 110114. Edited by Halperin J. J. . Wallingford: CAB International. [View Article] [Google Scholar]
  32. Miklossy J., Kasas S., Zurn A. D., McCall S., Yu S., McGeer P. L. (2008). Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5, 40. [View Article][PubMed] [Google Scholar]
  33. Motaleb M. A., Corum L., Bono J. L., Elias A. F., Rosa P., Samuels D. S., Charon N. W. (2000). Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci U S A 97, 1089910904. [View Article][PubMed] [Google Scholar]
  34. Murgia R., Cinco M. (2004). Induction of cystic forms by different stress conditions in Borrelia burgdorferi . APMIS 112, 5762. [View Article][PubMed] [Google Scholar]
  35. Onwuamaegbu M. E., Belcher R. A., Soare C. (2005). Cell wall-deficient bacteria as a cause of infections: a review of the clinical significance. J Int Med Res 33, 120. [View Article][PubMed] [Google Scholar]
  36. Radolf J. D., Bourell K. W., Akins D. R., Brusca J. S., Norgard M. V. (1994). Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176, 2131.[PubMed] [Google Scholar]
  37. Radolf J. D., Caimano M. J., Stevenson B., Hu L. T. (2012). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10, 8799.[PubMed] [Google Scholar]
  38. Ranjit D. K., Young K. D. (2013). The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli . J Bacteriol 195, 24522462. [View Article][PubMed] [Google Scholar]
  39. Sapi E., Bastian S. L., Mpoy C. M., Scott S., Rattelle A., Pabbati N., Poruri A., Burugu D., Theophilus P. A. S. & other authors (2012). Characterization of biofilm formation by Borrelia burgdorferi in vitro . PLoS ONE 7, e48277. [View Article][PubMed] [Google Scholar]
  40. Schnell B., Staubli T., Harris N. L., Rogler G., Kopf M., Loessner M. J., Schuppler M. (2014). Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity. Front Cell Infect Microbiol 4, 60. [View Article][PubMed] [Google Scholar]
  41. Serra D. O., Richter A. M., Klauck G., Mika F., Hengge R. (2013). Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4, e00103e00113. [View Article][PubMed] [Google Scholar]
  42. Srivastava S. Y., de Silva A. M. (2009). Characterization of Borrelia burgdorferi aggregates. Vector-Borne Zoonotic Dis 9, 323329. [View Article][PubMed] [Google Scholar]
  43. Stricker R. B., Johnson L. (2011). Lyme disease: the next decade. Infect Drug Resist 4, 19. [View Article][PubMed] [Google Scholar]
  44. Takayama K., Rothenberg R. J., Barbour A. G. (1987). Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi . Infect Immun 55, 23112313.[PubMed] [Google Scholar]
  45. Thammasri K., Rauhamäki S., Wang L., Filippou A., Kivovich V., Marjomäki V., Naides S. J., Gilbert L. (2013). Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS ONE 8, e67179. [View Article][PubMed] [Google Scholar]
  46. Whitmire W. M., Garon C. F. (1993). Specific and nonspecific responses of murine B cells to membrane blebs of Borrelia burgdorferi . Infect Immun 61, 14601467.[PubMed] [Google Scholar]
  47. Winkler W. (1899). Untersuchungen über das Wessen der Bakterien und deren einordnung im pilzsystem. Zbl BaktII Abt Orig 5, 569579. [Google Scholar]
  48. Zhao X., Zhang K., Boquoi T., Hu B., Motaleb M. A., Miller K. A., James M. E., Charon N. W., Manson M. D. & other authors (2013). Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi . Proc Natl Acad Sci U S A 110, 1439014395. [View Article][PubMed] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000027
Loading
/content/journal/micro/10.1099/mic.0.000027
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Supplementary Data



Supplementary Data



This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error