1887

Abstract

Our basic cell biology research was aimed at investigating the effect on eukaryotic cells of the sudden loss of the F-actin cytoskeleton. Cells treated with latrunculin A (LA) in yeast extract peptone dextrose (YEPD) medium were examined using phase-contrast and fluorescent microscopy, freeze-substitution, transmission and scanning electron microscopy, counted using a Bürker chamber and their absorbance measured. The cells responded to the presence of LA, an F-actin inhibitor, with the disappearance of actin patches, actin cables and actin rings. This resulted in the formation of larger spherical cells with irregular morphology in the cell walls and ultrastructural disorder of the cell organelles and secretory vesicles. Instead of buds, LA-inhibited cells formed only ‘table-mountain-like’ wide flattened swellings without apical growth with a thinner glucan cell-wall layer containing β-1,3-glucan microfibrils. The LA-inhibited cells lysed. Actin cables and patches were required for bud formation and bud growth. In addition, actin patches were required for the formation of β-1,3-glucan microfibrils in the bud cell wall. LA has fungistatic, fungicidal and fungilytic effects on the budding yeast .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000091
2015-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1348.html?itemId=/content/journal/micro/10.1099/mic.0.000091&mimeType=html&fmt=ahah

References

  1. Adams A.E.M., Pringle J.R. (1984). Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae J Cell Biol 98934945 doi: [View Article][PubMed]. [Google Scholar]
  2. Ayscough K.R., Stryker J., Pokala N., Sanders M., Crews P., Drubin D.G. (1997). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-AJ Cell Biol 137399416 doi: [View Article][PubMed]. [Google Scholar]
  3. Cabib E., Roh D.H., Schmidt M., Crotti L.B., Varma A. (2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesisJ Biol Chem 2761967919682 doi: [View Article][PubMed]. [Google Scholar]
  4. Cid V.J., Durán A. (1995). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae Microbiol Rev 59345386 [Google Scholar]
  5. Drubin D.G. (1991). Development of cell polarity in budding yeastCell 6510931096 doi: [View Article][PubMed]. [Google Scholar]
  6. Gabriel M., Kopecká M. (1995). Disruption of the actin cytoskeleton in budding yeast results in formation of an aberrant cell wallMicrobiology 141891899 doi: [View Article][PubMed]. [Google Scholar]
  7. Gabriel M., Kopecká M., Svoboda A. (1992). Structural rearrangements of the actin cytoskeleton in regenerating protoplasts of budding yeastsJ Gen Microbiol 13822292234 doi: [View Article]. [Google Scholar]
  8. Gabriel M., Horký D., Svoboda A., Kopecká M. (1998). Cytochalasin D interferes with contractile actin ring and septum formation in Schizosaccharomyces japonicus var. versatilis Microbiology 14423312344 doi: [View Article][PubMed]. [Google Scholar]
  9. Hartwell L.H., Culotti J., Pringle J.R., Reid B.J. (1974). Genetic control of the cell division cycle in yeastScience 1834651 doi: [View Article][PubMed]. [Google Scholar]
  10. Inoue S.B., Qadota H., Arisawa M., Anraku Y., Watanabe T., Ohya Y. (1996). Signaling toward yeast 1,3-β-glucan synthesisCell Struct Funct 21395402 doi: [View Article][PubMed]. [Google Scholar]
  11. Irazoqui J.E., Lew D.J. (2004). Polarity establishment in yeastJ Cell Sci 11721692171 doi: [View Article][PubMed]. [Google Scholar]
  12. Kilmartin J.V., Adams A.E.M. (1984). Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces J Cell Biol 98922933 doi: [View Article][PubMed]. [Google Scholar]
  13. Klis F.M. (1994). Review: cell wall assembly in yeastYeast 10851869 doi: [View Article][PubMed]. [Google Scholar]
  14. Klis F.M., de Koster C.G., Brul S. (2014). Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae Candida albicans Eukaryot Cell 1329 doi: [View Article][PubMed]. [Google Scholar]
  15. Kopecká M. (1984a). Lysis of growing cells of Saccharomyces cerevisiae induced by papulacandin BFolia Microbiol (Praha) 29115119 doi: [View Article][PubMed]. [Google Scholar]
  16. Kopecká M. (1984b). Papulacandin B: inhibitor of biogenesis of (1(3)-β-d-glucan fibrillar component of the cell wall of Saccharomyces cerevisiae protoplastsFolia Microbiol (Praha) 29441449 doi: [View Article][PubMed]. [Google Scholar]
  17. Kopecká M. (1994). Study of three-dimensional architecture of the yeast cell wall and of molecular mechanisms of its origin Associate Professor Dissertation, Part I and II. Masaryk University Brno [Google Scholar]
  18. Kopecká M., Gabriel M. (1992). The influence of congo red on the cell wall and (1––3)-β-D-glucan microfibril biogenesis in Saccharomyces cerevisiae Arch Microbiol 158115126 doi: [View Article][PubMed]. [Google Scholar]
  19. Kopecká M., Gabriel M. (1995). Actin cortical cytoskeleton and cell wall synthesis in regenerating protoplasts of the Saccharomyces cerevisiae actin mutant DBY 1693Microbiology 14112891299 doi: [View Article][PubMed]. [Google Scholar]
  20. Kopecká M., Gabriel M. (1998). The aberrant positioning of nuclei and the microtubular cytoskeleton in Saccharomyces cerevisiae due to improper actin functionMicrobiology 14417831797 doi: [View Article][PubMed]. [Google Scholar]
  21. Kopecká M., Gabriel M. (2009). Microtubules and actin cytoskeleton of potentially pathogenic basidiomycetous yeast as targets for antifungalsChemotherapy 55278286 doi: [View Article][PubMed]. [Google Scholar]
  22. Kopecká M., Kreger D.R. (1986). Assembly of microfibrils in vivo and in vitro from (1––3)-β-D-glucan synthesized by protoplasts of Saccharomyces cerevisiae Arch Microbiol 143387395 doi: [View Article][PubMed]. [Google Scholar]
  23. Kopecká M., Yamaguchi M. (2011). Ultrastructural disorder of actin mutant suggests uncoupling of actin-dependent pathway from microtubule-dependent pathway in budding yeastJ Electron Microsc (Tokyo) 60379391 doi: [View Article][PubMed]. [Google Scholar]
  24. Kopecká M., Svoboda A., Brichta J. (1973). Effect of “osmotic stabilizers” and glycerol on yeast cell envelopesZ Allg Mikrobiol 13481487 doi: [View Article][PubMed]. [Google Scholar]
  25. Kopecká M., Phaff H.J., Fleet G.H. (1974). Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae and its chemical natureJ Cell Biol 626676 doi: [View Article][PubMed]. [Google Scholar]
  26. Kopecká M., Fleet G.H., Phaff H.J. (1995). Ultrastructure of the cell wall of Schizosaccharomyces pombe following treatment with various glucanasesJ Struct Biol 114140152 doi: [View Article][PubMed]. [Google Scholar]
  27. Kopecká M., Ilkovics L., Ramíková V., Yamaguchi M. (2010). Effect of cytoskeleton inhibitors on conidiogenesis and capsule in the long neck yeast Fellomyces examined by scanning electron microscopyChemotherapy 56197202 doi: [View Article][PubMed]. [Google Scholar]
  28. Kübler E., Riezman H. (1993). Actin and fimbrin are required for the internalization step of endocytosis in yeastEMBO J 1228552862 [Google Scholar]
  29. Levin D.E. (2011). Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathwayGenetics 18911451175 doi: [View Article][PubMed]. [Google Scholar]
  30. Moseley J.B., Goode B.L. (2006). The yeast actin cytoskeleton: from cellular function to biochemical mechanismMicrobiol Mol Biol Rev 70605645 doi: [View Article][PubMed]. [Google Scholar]
  31. Mulholland J., Preuss D., Moon A., Wong A., Drubin D., Botstein D. (1994). Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membraneJ Cell Biol 125381391 doi: [View Article][PubMed]. [Google Scholar]
  32. Novick P., Botstein D. (1985). Phenotypic analysis of temperature-sensitive yeast actin mutantsCell 40405416 doi: [View Article][PubMed]. [Google Scholar]
  33. Novick P., Schekman R. (1983). Export of major cell surface proteins is blocked in yeast secretory mutantsJ Cell Biol 96541547 doi: [View Article][PubMed]. [Google Scholar]
  34. Novick P., Ferro S., Schekman R. (1981). Order of events in the yeast secretory pathwayCell 25461469 doi: [View Article][PubMed]. [Google Scholar]
  35. Ohya Y., Sese J., Yukawa M., Sano F., Nakatani Y., Saito T.L., Saka A., Fukuda T., Ishihara S., other authors. (2005). High-dimensional and large-scale phenotyping of yeast mutantsProc Natl Acad Sci U S A 1021901519020 doi: [View Article][PubMed]. [Google Scholar]
  36. Okada H., Abe M., Asakawa-Minemura M., Hirata A., Qadota H., Morishita K., Ohnuki S., Nogami S., Ohya Y. (2010). Multiple functional domains of the yeast l,3-β-glucan synthase subunit Fks1p revealed by quantitative phenotypic analysis of temperature-sensitive mutantsGenetics 18410131024 doi: [View Article][PubMed]. [Google Scholar]
  37. Orlean P. (2012). Architecture and biosynthesis of the Saccharomyces cerevisiae cell wallGenetics 192775818 doi: [View Article][PubMed]. [Google Scholar]
  38. Palmer R.E., Sullivan D.S., Huffaker T., Koshland D. (1992). Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae J Cell Biol 119583593 doi: [View Article][PubMed]. [Google Scholar]
  39. Pruyne D., Bretscher A. (2000). Polarization of cell growth in yeastJ Cell Sci 113571585 [Google Scholar]
  40. Qadota H., Python C.P., Inoue S.B., Arisawa M., Anraku Y., Zheng Y., Watanabe T., Levin D.E., Ohya Y. (1996). Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthaseScience 272279281 doi: [View Article][PubMed]. [Google Scholar]
  41. Schmidt A., Hall M.N. (1998). Signaling to the actin cytoskeletonAnnu Rev Cell Dev Biol 14305338 doi: [View Article][PubMed]. [Google Scholar]
  42. Shortle D., Novick P., Botstein D. (1984). Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin geneProc Natl Acad Sci U S A 8148894893 doi: [View Article][PubMed]. [Google Scholar]
  43. Spector I., Shochet N.R., Kashman Y., Groweiss A. (1983). Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cellsScience 219493495 doi: [View Article][PubMed]. [Google Scholar]
  44. Teparić R., Mrša V. (2013). Proteins involved in building, maintaining and remodeling of yeast cell wallsCurr Genet 59171185 doi: [View Article][PubMed]. [Google Scholar]
  45. Utsugi T., Minemura M., Hirata A., Abe M., Watanabe D., Ohya Y. (2002). Movement of yeast 1,3-β-glucan synthase is essential for uniform cell wall synthesisGenes Cells 719 doi: [View Article][PubMed]. [Google Scholar]
  46. Yamaguchi M., Kopecká M. (2010). Ultrastructural disorder of the secretory pathway in temperature-sensitive actin mutants of Saccharomyces cerevisiae J Electron Microsc (Tokyo) 59141152 doi: [View Article][PubMed]. [Google Scholar]
  47. Yamaguchi M., Okada H., Namiki Y. (2009). Smart specimen preparation for freeze substitution and serial ultrathin sectioning of yeast cellsJ Electron Microsc (Tokyo) 58261266 doi: [View Article][PubMed]. [Google Scholar]
  48. Yamaguchi M., Namiki Y., Okada H., Uematsu K., Tame A., Maruyama T., Kozuka Y. (2011). Improved preservation of fine structure of deep-sea micro-organisms by freeze-substitution after glutaraldehyde fixationJ Electron Microsc (Tokyo) 60283287 doi: [View Article][PubMed]. [Google Scholar]
  49. Yamochi W., Tanaka K., Nonaka H., Maeda A., Musha T., Takai Y. (1994). Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae J Cell Biol 12510771093 doi: [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000091
Loading
/content/journal/micro/10.1099/mic.0.000091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error