1887

Abstract

is the dominant pathogen infecting the airways of cystic fibrosis (CF) patients. During the intermittent colonization phase, resembles environmental strains but later evolves to the chronic adapted phenotype characterized by resistance to antibiotics and mutations in the global regulator genes and . Our aim was to understand the metabolic changes occurring over time and between niches of the CF airways. By applying Phenotype MicroArrays, we investigated changes in the carbon and nitrogen catabolism of subsequently clonally related mucoid and non-mucoid (NM) lung and sinus isolates from 10 CF patients (five intermittently colonized/five chronically infected). We found the most pronounced catabolic changes for the early/late NM isolate comparisons, with respiratory reduction seen for all chronically infecting isolates and two intermittently colonizing isolates. Fewer differences were observed between sinus and lung isolates, showing a higher degree of isolate similarity between these two niches. Modest respiratory changes were seen for the early isolate/PAO1 comparisons, indicating colonization with environmental isolates. Assignment of metabolic pathways via the KEGG database showed a prevalence of substrates involved in the metabolism of Ala, Asp and Glu, -Ala, and Arg and Pro. In conclusion, extensive heterogeneity in the metabolic profiles of the isolates was observed from the initial stages of the infection, showing a rapid diversification of the bacteria in the heterogeneous environment of the lung. Metabolic reduction seems to be a common trait and therefore an adaptive phenotype, though it can be reached via multiple metabolic pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000093
2015-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1447.html?itemId=/content/journal/micro/10.1099/mic.0.000093&mimeType=html&fmt=ahah

References

  1. Aanaes K., Rickelt L.F., Johansen H.K., von Buchwald C., Pressler T., Høiby N., Jensen P.Ø. (2011). Decreased mucosal oxygen tension in the maxillary sinuses in patients with cystic fibrosisJ Cyst Fibros 10114120 [View Article][PubMed]. [Google Scholar]
  2. Aanaes K., Johansen H.K., Poulsen S.S., Pressler T., Buchwald C., Høiby N. (2013a). Secretory IgA as a diagnostic tool for Pseudomonas aeruginosa respiratory colonizationJ Cyst Fibros 128187 [View Article][PubMed]. [Google Scholar]
  3. Aanaes K., von Buchwald C., Hjuler T., Skov M., Alanin M., Johansen H.K. (2013b). The effect of sinus surgery with intensive follow-up on pathogenic sinus bacteria in patients with cystic fibrosisAm J Rhinol Allergy 27e1e4 [View Article][PubMed]. [Google Scholar]
  4. Barth A.L., Pitt T.L. (1995). Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosisJ Clin Microbiol 333740. [Google Scholar]
  5. Barth A.L., Pitt T.L. (1996). The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa J Med Microbiol 45110119 [View Article][PubMed]. [Google Scholar]
  6. Behrends V., Ryall B., Zlosnik J.E.A., Speert D.P., Bundy J.G., Williams H.D. (2013). Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infectionsEnviron Microbiol 15398408 [View Article][PubMed]. [Google Scholar]
  7. Bjarnsholt T., Jensen P.Ø., Fiandaca M.J., Pedersen J., Hansen C.R., Andersen C.B., Pressler T., Givskov M., Høiby N. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patientsPediatr Pulmonol 44547558 [View Article][PubMed]. [Google Scholar]
  8. Bochner B.R. (2009). Global phenotypic characterization of bacteriaFEMS Microbiol Rev 33191205 [View Article][PubMed]. [Google Scholar]
  9. Boulette M.L., Baynham P.J., Jorth P.A., Kukavica-Ibrulj I., Longoria A., Barrera K., Levesque R.C., Whiteley M. (2009). Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivoJ Bacteriol 19163296334 [View Article][PubMed]. [Google Scholar]
  10. Brennan A.L., Gyi K.M., Wood D.M., Johnson J., Holliman R., Baines D.L., Philips B.J., Geddes D.M., Hodson M.E., Baker E.H. (2007). Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosisJ Cyst Fibros 6101109.[CrossRef] [Google Scholar]
  11. Buchanan P.J., Ernst R.K., Elborn J.S., Schock B. (2009). Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammationBiochem Soc Trans 37863867 [View Article][PubMed]. [Google Scholar]
  12. Burns J.L., Gibson R.L., McNamara S., Yim D., Emerson J., Rosenfeld M., Hiatt P., McCoy K., Castile R., other authors. (2001). Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosisJ Infect Dis 183444452 [View Article][PubMed]. [Google Scholar]
  13. Ciofu O., Riis B., Pressler T., Poulsen H.E., Høiby N. (2005). Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammationAntimicrob Agents Chemother 4922762282 [View Article][PubMed]. [Google Scholar]
  14. Ciofu O., Lee B., Johannesson M., Hermansen N.O., Meyer P., Høiby N., Scandinavian Cystic Fibrosis Study Consortium. (2008). Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertantsMicrobiology 154103113 [View Article][PubMed]. [Google Scholar]
  15. Ciofu O., Mandsberg L.F., Bjarnsholt T., Wassermann T., Høiby N. (2010). Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutantsMicrobiology 15611081119 [View Article][PubMed]. [Google Scholar]
  16. Ciofu O., Hansen C.R., Høiby N. (2013). Respiratory bacterial infections in cystic fibrosisCurr Opin Pulm Med 19251258 [View Article][PubMed]. [Google Scholar]
  17. Craig A., Mai J., Cai S., Jeyaseelan S. (2009). Neutrophil recruitment to the lungs during bacterial pneumoniaInfect Immun 77568575 [View Article][PubMed]. [Google Scholar]
  18. D'Argenio D.A., Wu M., Hoffman L.R., Kulasekara H.D., Déziel E., Smith E.E., Nguyen H., Ernst R.K., Larson Freeman T.J., other authors. (2007). Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patientsMol Microbiol 64512533 [View Article][PubMed]. [Google Scholar]
  19. Damkiær S., Yang L., Molin S., Jelsbak L. (2013). Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hostsProc Natl Acad Sci U S A 11077667771 [View Article][PubMed]. [Google Scholar]
  20. Darch S.E., McNally A., Harrison F., Corander J., Barr H.L., Paszkiewicz K., Holden S., Fogarty A., Crusz S.A., Diggle S.P. (2015). Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infectionSci Rep 57649 [View Article][PubMed]. [Google Scholar]
  21. Döring G., Flume P., Heijerman H., Elborn J.S. (2012). Treatment of lung infection in patients with cystic fibrosis: current and future strategiesJ Cyst Fibros 11461479.[CrossRef] [Google Scholar]
  22. Downey D.G., Bell S.C., Elborn J.S. (2009). Neutrophils in cystic fibrosisThorax 648188 [View Article][PubMed]. [Google Scholar]
  23. Feliziani S., Marvig R.L., Luján A.M., Moyano A.J., Di Rienzo J.A., Krogh Johansen H., Molin S., Smania A.M. (2014). Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infectionsPLoS Genet 10e1004651 [View Article][PubMed]. [Google Scholar]
  24. Folkesson A., Jelsbak L., Yang L., Johansen H.K., Ciofu O., Høiby N., Molin S. (2012). Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspectiveNat Rev Microbiol 10841851 [View Article][PubMed]. [Google Scholar]
  25. Fothergill J.L., Neill D.R., Loman N., Winstanley C., Kadioglu A. (2014). Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungsNat Commun 54780 [View Article][PubMed]. [Google Scholar]
  26. Frederiksen B., Koch C., Høiby N. (1997). Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosisPediatr Pulmonol 23330335 [View Article][PubMed]. [Google Scholar]
  27. Garred P., Pressler T., Madsen H.O., Frederiksen B., Svejgaard A., Høiby N., Schwartz M., Koch C. (1999). Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosisJ Clin Invest 104431437 [View Article][PubMed]. [Google Scholar]
  28. Hansen C.R., Pressler T., Høiby N. (2008). Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experienceJ Cyst Fibros 7523530.[CrossRef] [Google Scholar]
  29. Hansen S.K., Rau M.H., Johansen H.K., Ciofu O., Jelsbak L., Yang L., Folkesson A., Jarmer H.O., Aanæs K., other authors. (2012). Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infectionISME J 63145 [View Article][PubMed]. [Google Scholar]
  30. Häussler S. (2004). Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa Environ Microbiol 6546551 [View Article][PubMed]. [Google Scholar]
  31. Hoboth C., Hoffmann R., Eichner A., Henke C., Schmoldt S., Imhof A., Heesemann J., Hogardt M. (2009). Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosisJ Infect Dis 200118130 [View Article][PubMed]. [Google Scholar]
  32. Hoffman L.R., Richardson A.R., Houston L.S., Kulasekara H.D., Martens-Habbena W., Klausen M., Burns J.L., Stahl D.A., Hassett D.J., other authors. (2010). Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airwayPLoS Pathog 6e1000712 [View Article][PubMed]. [Google Scholar]
  33. Hoffmann N., Rasmussen T.B., Jensen P.Ø., Stub C., Hentzer M., Molin S., Ciofu O., Givskov M., Johansen H.K., Høiby N. (2005). Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosisInfect Immun 7325042514 [View Article][PubMed]. [Google Scholar]
  34. Hogardt M., Heesemann J. (2010). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lungInt J Med Microbiol 300557562 [View Article][PubMed]. [Google Scholar]
  35. Høiby N. (1974). Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosisActa Pathol Microbiol Scand B Microbiol Immunol 82541550. [Google Scholar]
  36. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. (2010a). Antibiotic resistance of bacterial biofilmsInt J Antimicrob Agents 35322332 [View Article][PubMed]. [Google Scholar]
  37. Høiby N., Ciofu O., Bjarnsholt T. (2010b). Pseudomonas aeruginosa biofilms in cystic fibrosisFuture Microbiol 516631674 [View Article][PubMed]. [Google Scholar]
  38. Holloway B.W. (1955). Genetic recombination in Pseudomonas aeruginosa J Gen Microbiol 13572581 [View Article][PubMed]. [Google Scholar]
  39. Jelsbak L., Johansen H.K., Frost A.L., Thøgersen R., Thomsen L.E., Ciofu O., Yang L., Haagensen J.A.J., Høiby N., Molin S. (2007). Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patientsInfect Immun 7522142224 [View Article][PubMed]. [Google Scholar]
  40. Johansen H.K., Nørregaard L., Gøtzsche P.C., Pressler T., Koch C., Høiby N. (2004). Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success?—A 30-year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infectionPediatr Pulmonol 37427432 [View Article][PubMed]. [Google Scholar]
  41. Johansen H.K., Moskowitz S.M., Ciofu O., Pressler T., Høiby N. (2008). Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patientsJ Cyst Fibros 7391397 [View Article][PubMed]. [Google Scholar]
  42. Johansen H.K., Aanaes K., Pressler T., Nielsen K.G., Fisker J., Skov M., Høiby N., von Buchwald C. (2012). Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN responseJ Cyst Fibros 11525531 [View Article][PubMed]. [Google Scholar]
  43. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutantsMol Microbiol 4815111524 [View Article][PubMed]. [Google Scholar]
  44. Knudsen P.K., Olesen H.V., Høiby N., Johannesson M., Karpati F., Laerum B.N., Meyer P., Pressler T., Lindblad A., Scandinavian CF Study Consortium (SCFSC). (2009). Differences in prevalence and treatment of Pseudomonas aeruginosa in cystic fibrosis centres in Denmark, Norway and SwedenJ Cyst Fibros 8135142 [View Article][PubMed]. [Google Scholar]
  45. Koch C., Høiby N. (1993). Pathogenesis of cystic fibrosisLancet 34110651069 [View Article][PubMed]. [Google Scholar]
  46. Kolpen M., Hansen C.R., Bjarnsholt T., Moser C., Christensen L.D., van Gennip M., Ciofu O., Mandsberg L., Kharazmi A., other authors. (2010). Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosisThorax 655762 [View Article][PubMed]. [Google Scholar]
  47. Lindberg R.B., Latta R.L. (1974). Phage typing of Pseudomonas aeruginosa: clinical and epidemiologic considerationsJ Infect Dis 130S33S42 [View Article][PubMed]. [Google Scholar]
  48. Maharjan R.P., Seeto S., Ferenci T. (2007). Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli populationJ Bacteriol 18923502358 [View Article][PubMed]. [Google Scholar]
  49. Malone J.G., Jaeger T., Spangler C., Ritz D., Spang A., Arrieumerlou C., Kaever V., Landmann R., Jenal U. (2010). YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa PLoS Pathog 6e1000804 [View Article][PubMed]. [Google Scholar]
  50. Markussen T., Marvig R.L., Gómez-Lozano M., Aanæs K., Burleigh A.E., Høiby N., Johansen H.K., Molin S., Jelsbak L. (2014). Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa MBio 5e01592e01e14 [View Article][PubMed]. [Google Scholar]
  51. Marvig R.L., Sommer L.M., Molin S., Johansen H.K. (2015). Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosisNat Genet 475764 [View Article][PubMed]. [Google Scholar]
  52. Mathee K., Ciofu O., Sternberg C., Lindum P.W., Campbell J.I., Jensen P., Johnsen A.H., Givskov M., Ohman D.E., other authors. (1999). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lungMicrobiology 14513491357 [View Article][PubMed]. [Google Scholar]
  53. Moeller W., Schuschnig U., Meyer G., Häussinger K., Keller M., Junge-Hülsing B., Mentzel H. (2009). Ventilation and aerosolized drug delivery to the paranasal sinuses using pulsating airflow - a preliminary studyRhinology 47405412. [Google Scholar]
  54. Mowat E., Paterson S., Fothergill J.L., Wright E.A., Ledson M.J., Walshaw M.J., Brockhurst M.A., Winstanley C. (2011). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infectionsAm J Respir Crit Care Med 18316741679 [View Article][PubMed]. [Google Scholar]
  55. Nishijyo T., Haas D., Itoh Y. (2001). The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa Mol Microbiol 40917931 [View Article][PubMed]. [Google Scholar]
  56. Oberhardt M.A., Puchałka J., Fryer K.E., Martins dos Santos V.A.P., Papin J.A. (2008). Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1J Bacteriol 19027902803 [View Article][PubMed]. [Google Scholar]
  57. Palmer K.L., Mashburn L.M., Singh P.K., Whiteley M. (2005). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiologyJ Bacteriol 18752675277 [View Article][PubMed]. [Google Scholar]
  58. Palmer K.L., Aye L.M., Whiteley M. (2007). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputumJ Bacteriol 18980798087 [View Article][PubMed]. [Google Scholar]
  59. Palmer G.C., Palmer K.L., Jorth P.A., Whiteley M. (2010). Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosineJ Bacteriol 19227222728 [View Article][PubMed]. [Google Scholar]
  60. Pedersen S.S., Møller H., Espersen F., Sørensen C.H., Jensen T., Høiby N. (1992). Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosisAPMIS 100326334 [View Article][PubMed]. [Google Scholar]
  61. Pressler T., Frederiksen B., Skov M., Garred P., Koch C., Høiby N. (2006). Early rise of anti-Pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection – a case control studyJ Cyst Fibros 5915.[CrossRef] [Google Scholar]
  62. Pressler T., Karpati F., Granström M., Knudsen P.K., Lindblad A., Hjelte L., Olesen H.V., Meyer P., Høiby N., Scandinavian CF Study Consortium. (2009). Diagnostic significance of measurements of specific IgG antibodies to Pseudomonas aeruginosa by three different serological methodsJ Cyst Fibros 83742 [View Article][PubMed]. [Google Scholar]
  63. Rainey P.B., Travisano M. (1998). Adaptive radiation in a heterogeneous environmentNature 3946972 [View Article][PubMed]. [Google Scholar]
  64. Rasmussen T.B., Skindersoe M.E., Bjarnsholt T., Phipps R.K., Christensen K.B., Jensen P.O., Andersen J.B., Koch B., Larsen T.O., other authors. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium speciesMicrobiology 15113251340 [View Article][PubMed]. [Google Scholar]
  65. Rojo F. (2010). Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environmentFEMS Microbiol Rev 34658684.[CrossRef] [Google Scholar]
  66. Rudkjøbing V.B., Thomsen T.R., Alhede M., Kragh K.N., Nielsen P.H., Johansen U.R., Givskov M., Høiby N., Bjarnsholt T. (2012). The micro-organisms in chronically infected end-stage and non-end-stage cystic fibrosis patientsFEMS Immunol Med Microbiol 65236244 [View Article][PubMed]. [Google Scholar]
  67. Schobert M., Jahn D. (2010). Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lungInt J Med Microbiol 300549556 [View Article][PubMed]. [Google Scholar]
  68. Stoltz D.A., Meyerholz D.K., Welsh M.J. (2015). Origins of cystic fibrosis lung diseaseN Engl J Med 372351362 [View Article][PubMed]. [Google Scholar]
  69. Taylor R.F., Hodson M.E., Pitt T.L. (1993). Adult cystic fibrosis: association of acute pulmonary exacerbations and increasing severity of lung disease with auxotrophic mutants of Pseudomonas aeruginosa Thorax 4810021005 [View Article][PubMed]. [Google Scholar]
  70. Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typingJ Clin Microbiol 3322332239. [Google Scholar]
  71. Thomas S.R., Ray A., Hodson M.E., Pitt T.L. (2000). Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung diseaseThorax 55795797 [View Article][PubMed]. [Google Scholar]
  72. Totten P.A., Lara J.C., Lory S. (1990). The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin geneJ Bacteriol 172389396. [Google Scholar]
  73. Tramper-Stranders G.A., van der Ent C.K., Molin S., Yang L., Hansen S.K., Rau M.H., Ciofu O., Johansen H.K., Wolfs T.F.W. (2012). Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolatesClin Microbiol Infect 18567574 [View Article][PubMed]. [Google Scholar]
  74. Valentini M., Storelli N., Lapouge K. (2011). Identification of C4-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1J Bacteriol 19343074316 [View Article][PubMed]. [Google Scholar]
  75. Wahba A.H., Darrell J.H. (1965). The identification of atypical strains of Pseudomonas aeruginosa J Gen Microbiol 38329342 [View Article][PubMed]. [Google Scholar]
  76. Workentine M.L., Sibley C.D., Glezerson B., Purighalla S., Norgaard-Gron J.C., Parkins M.D., Rabin H.R., Surette M.G. (2013). Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patientPLoS One 8e60225 [View Article][PubMed]. [Google Scholar]
  77. Yang L., Haagensen J.A.J., Jelsbak L., Johansen H.K., Sternberg C., Høiby N., Molin S. (2008). In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infectionsJ Bacteriol 19027672776 [View Article][PubMed]. [Google Scholar]
  78. Yang L., Jelsbak L., Marvig R.L., Damkiær S., Workman C.T., Rau M.H., Hansen S.K., Folkesson A., Johansen H.K., other authors. (2011). Evolutionary dynamics of bacteria in a human host environmentProc Natl Acad Sci U S A 10874817486 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000093
Loading
/content/journal/micro/10.1099/mic.0.000093
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error