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Analysis of the genome sequence of Methanoregula boonei strain 6A8, an acidophilic

methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features

that likely allow it to survive in acidic, nutrient-poor conditions. First, M. boonei is predicted to

generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce,

and the sequence of a membrane-bound methyltransferase, believed to pump Na+ in all

methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the

hypokalemic status of many peat bogs, M. boonei demonstrates redundancy in the predicted

potassium uptake genes trk, kdp and kup, some of which may have been horizontally transferred

to methanogens from bacteria, possibly Geobacter spp. Overall, the putative functions of the

potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the

cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs.
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INTRODUCTION

Methanoregula boonei is an acidophilic methanogen
isolated from an ombrotrophic peat bog (McLean Bog) in

New York State, USA (Bräuer et al., 2006a). A member of
the Euryarcheal order Methanomicrobiales, this archaeon

demonstrates physiological evidence of adaptation to
nutrient-poor low ionic strength environments, such as

ability to grow at 0.4 mM Na+ and sensitivity to w50 mM
sodium (Bräuer et al., 2011) in contrast to methanogens

described elsewhere (Jarrell & Kalmokoff, 1988). As M.
boonei has been described previously (Bräuer et al., 2011),

this paper will focus on a summary of genomic evidence
revealing the presence of putative genes specific for proton-

rich and sodium- and potassium-poor environments.

M. boonei is the type strain (DSMZ521154T, JCM514090T)

within the type genus of the familyMethanoregulaceae (Sakai

et al., 2012). Cultures are dimorphic, containing thin rods

(0.2–0.3 mm in diameter and 0.8–3.0 mm long) and irregular

cocci (0.2–0.8 mm in diameter). In PM1 medium, M. boonei

appears to be an obligate hydrogenotroph and is unable

to utilize formate, acetate, methanol, ethanol, 2-propanol,

butanol or trimethylamine (Bräuer et al., 2011). Optimal

growth conditions are near 35–37 uC and pH 5.1, with

growth occurring at pH values as low as 3.8.

METHODS

Preparation of DNA and genome sequencing. M. boonei was
cultured as described previously (Bräuer et al., 2006b). An ex-
ponentially growing culture (1l) was harvested by cold centrifu-
gation and DNA was extracted using a GNOME DNA isolation
kit (MP Biomedicals), following the manufacturer’s protocols
except that a final concentration of 0.1% SDS was added in
addition to the cell lysis/denaturing solution to increase cell lysis.
Genomic DNA was then evaluated for quality and concentration
prior to sequencing.

Abbreviations: COG, cluster of orthologous groups; JGI, Joint Genome
Institute.

The GenBank/EMBL/DDBJ accession number for the complete genome
sequence of Methanoregula boonei strain 6A8 is NC_009712.

Two supplementary tables and a supplementary figure are available with
the online Supplementary Material.
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The genome of M. boonei 6A8 was sequenced at the Joint Genome
Institute (JGI) using a combination of 3, 8 and 40 kb (fosmid) DNA
libraries. All general aspects of library construction and sequencing
performed at the JGI can be found at http://jgi.doe.gov/. Draft
assemblies were based on 37 430 total reads. All three libraries provided
13|coverage of the genome. The Phred/Phrap/Consed software
package (www.phrap.com) was used for sequence assembly and quality
assessment (Ewing & Green, 1998; Ewing et al., 1998; Gordon et al.,
1998). After the shotgun stage, reads were assembled with parallel
Phrap (High Performance Software). Possible misassemblies were
corrected with Dupfinisher (Han & Chain, 2006). Gaps between
contigs were closed by editing in Consed or custom primer walk.
A total of 921 additional reactions were necessary to close gaps and to
raise the quality of the finished sequence. The completed genome
sequences of M. boonei 6A8 contains 37 526 reads, achieving a mean of
13-fold sequence coverage per base with an error rate of less than 1 in
100 000.

Additional gene functional annotation and comparative analyses
were performed within the Integrated Microbial Genomes (IMG/ER)
platform (Markowitz et al., 2006). Alignments of functional genes
were conducted in BioEdit using CLUSTAL W (Larkin et al., 2007).
Phylogenetic trees were reconstructed using the PHYLIP software
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Fig. 1. Circular map of the M. boonei 6A8 genome. From the outside ring to the centre: (i) genes on the forward strand,
coloured by COG category (Tatusov et al., 2000); (ii) genes on the reverse strand, coloured by COG category; (iii) RNA
genes with tRNA genes coloured green, rRNA genes red and other RNAs black; (iv) GC content; (v) GC skew. This figure is
available on the IMG website (https://img.jgi.doe.gov/) (Markowitz et al., 2006).

Table 1. Genome features of M. boonei 6A8

Feature Genome (total)

Value % of total*

Size (bp) 2542943

No. of G+C bases 1386250 54.5

Coding sequence (bp) 2201702 86.6

Mean ORF length (bp) 893

5S rRNA 1

16S rRNA 1

23S rRNA 1

tRNA genes 48

Other RNA genes 3

Total no. of genes 2518

Proteins with function prediction 1617 64.2

Proteins without function prediction 847 33.6

GenBank accession no. NC_009712

*The total is based on either the size of the genome in bp or the total

number of protein encoding genes in the annotated genome.
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package (Felsenstein, 2004) by conducting both neighbour-joining
and maximum-likelihood analysis.

Nucleotide accession number. The complete genome sequence
of M. boonei strain 6A8 is available in the National Center for
Biotechnology Information database (Wheeler et al., 2007) under
GenBank/EMBL/DDBJ accession number NC_009712. Additionally,
the genome is available in the IMG system (Markowitz et al., 2006)
and the JGI genome portal (Grigoriev et al., 2012).

RESULTS AND DISCUSSION

Genome sequencing and annotation information

M. boonei was selected for sequencing due to its potential
energy production (methane), biogeochemical importance
in global carbon cycling and occurrence in habitats that are
unique for cultured methanogens, i.e. proton rich and
nutrient element poor. Sequencing, assembly and annota-
tion were conducted by the Department of Energy JGI.
A summary of the genome sequencing information can
be found in Table 1.

Genome properties

The genome consists of one single circular chromosome of
approximately 2.5 million bp with 2518 genes identified,
including one rRNA gene operon (Table 1, Fig. 1). High-
lighting our dearth of knowledge of methanogenic archaea,
only 36% of the genes were associated with one of the well-
defined cluster of orthologous groups (COG) categories
(Tatusov et al., 2000), with the remaining 64% either not
associated with a COG (39%), or associated only by gen-
eral (14%) or unknown (12%) function (Table 2). The
majority of the COG genes in M. boonei were predicted
to be involved in energy production and conversion
(9%), translation (8%), and transport and metabolism of
amino-acids (8%), coenzymes (6%) and ions (6%).

Adaptation to high proton concentrations

InMcLean Bog, the pH is near 4 and the H+ concentration is
approximately 1024 M (100 mM), three orders of magnitude
greater than at pH 7. Moreover, sphagnummoss impedes the
flow of mineral-rich groundwater into the bog so that the
only water source is rain, essentially distilled water. Conse-
quently, Na+ concentrations are typically low. For example,
Na+ concentrations were measured as only 2 mM in the
McLean Bog porewater (Bräuer et al., 2004). These exceed-
ingly low external Na+ concentrations make developing
and conserving a sodium motive force challenging; however,
sodiummotive force is considered essential to energy conser-
vation by methanogens (Schlegel & Müller, 2013).

All culturedmembersof thegroupsMethanobacteriales/Metha-
nococcales lack cytochromes, and the only known energy-
conserving step is Na+ pumping coupled to methyl group
transfer by the membrane-bound enzyme complex methylte-
trahydromethanopterin : coenzyme M methyltransferase

(Mtr) (Schlegel & Müller, 2013; Thauer et al., 2008).
Further, the A1A0 ATPase/synthases studied among the
members of the groups Methanobacteriales/Methanococ-
cales have clearly been shown to pump Na+ (McMillan
et al., 2011; Mulkidjanian et al., 2008). In contrast, the
cytochrome-containing methanogens in the Methanosarci-
nales have Mtr complexes, but also have steps that pump
protons (Schlegel & Müller, 2013; Thauer et al., 2008),
and evidence has favoured H+ pumping by the ATPases
in these organisms (Müller et al., 1999; Pisa et al., 2007).
More recently, it was demonstrated that the A1A0 archaeal
ATPase/synthase in Methanosarcina acetivorans is ‘pro-
miscuous’, pumping either Na+ or H+ (Schlegel et al.,
2012) with both ions possible at neutral pH, especially at
seawater salinity of 0.4 M Na+, whereas only protons
were pumped at pH 5. M. boonei belongs to the Methano-
microbiales, which lack cytochromes like the Methanobac-
teriales/Methanococcales cluster, but are more closely
related to the Methanosarcinales, and it is not clear which
patterns of bioenergetics this group follows.

It is the AtpC/K subunit of the membrane bound A0 subunit
of the A1A0 ATPase/synthase complex that is responsible for

Table 2. Genes associated with COG functional categories

COG category No. of genes % of total*

Energy production and conversion 157 9.35

Translation, ribosomal structure and

biogenesis

134 7.98

Amino acid transport and metabolism 133 7.92

Coenzyme transport and metabolism 108 6.43

Inorganic ion transport and metabolism 96 5.71

Signal transduction mechanisms 95 5.65

Transcription 83 4.94

Post-translational modification, protein

turnover, chaperones

69 4.11

Replication, recombination and repair 69 4.11

Carbohydrate transport and metabolism 61 3.63

Cell wall/membrane/envelope biogenesis 55 3.27

Nucleotide transport and metabolism 53 3.15

Cell motility 28 1.67

Defence mechanisms 27 1.61

Lipid transport and metabolism 24 1.43

Intracellular trafficking, secretion and

vesicular transport

22 1.31

Cell cycle control, cell division,

chromosome partitioning

18 1.07

Secondary metabolites biosynthesis,

transport and catabolism

15 0.89

Chromatin structure and dynamics 2 0.12

General function prediction only 227 13.51

Function unknown 204 12.14

Not in a COG category 971 38.56

*The total is based on the total number of protein encoding genes in

the annotated genome.
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pumping either H+ or Na+, with the ion typically binding
to a conserved aspartate or a glutamate located within a
transmembrane helix. In Table 3, partial sequences of the
AtpC/K are aligned, and residues critical to Na+ binding
in the Methanobacteriales/Methanococcales (Grüber et al.,
2014; McMillan et al., 2011) are indicated in bold. Also
shown in bold are residues in the M. acetivorans sequence
that are considered crucial to being able to bind either
Na+ or H+. The M. boonei sequence shares these residues
as well as many others with M. acetivorans, and it is likely
that its ATPase pumps protons near pH 4.

Another question of interest is whether the Mtr complex
in M. boonei pumps Na+. In Methanosarcina mazei
and Methanothermobacter marburgensis, Na+ pumping was
demonstrated for the Mtr complex, thereby leading to a
sodium motive force. From these results, it was extrapolated

that all Mtr complexes pump Na+ (Schlegel & Müller,
2013). The pumping is attributed to the membrane-bound
MtrE subunit, and a specific aspartate (indicated by the
bold D) predicted to be within a transmembrane helix,
part of the motif 168-IWGITIGAIGSSTGDVHYGAER-191
that is conserved between the two organisms (Gottschalk
& Thauer, 2001). M. boonei and other members of the
Methanomicrobiales have an asparagine instead of aspartate
at that position (position 190 in Fig. S1, available in the
online Supplementary Material) in their MtrE sequences,
which renders that residue unable to pump cations. There
is a glutamate at position 253 in Fig. S1 within a region
(predicted to be a transmembrane alpha helix by the IMG
website) that is conserved amongst Methanomicrobiales as
well as some other methanogens, but is not present in the
M. marburgensis or Methanosarcina barkeri sequences. This
residue may play a role in pumping but, as of now, it is

Table 3. Amino acid alignment of AtpCK demonstrating the two conserved glutamine (Q) and tyrosine (Y) residues (shown in
bold) (identified by: McMillan et al., 2011; Mulkidjanian et al., 2008; Sakai et al., 2011) that appear to be unique for methanogens
predicted to have sodium-driven ATPases versus those predicted to have proton-driven or sodium-proton driven ATPases

M. boonei is shaded in grey. Organisms predicted to have proton-driven ATPases are shown in red font and those predicted to have sodium-driven

ATPases are shown in blue font. Organisms with experimental evidence supporting sodium-driven ATPases are shown in bold blue and include:

Methanococcus jannaschii (Morsomme et al., 2002), Methanococcus voltae (Dybas & Konisky, 1992), Methanobacterium thermoautotrophicum

(Schönheit & Perski, 1983) and Methanobrevibacter ruminatum (McMillan et al., 2011). Organisms with experimental evidence supporting

proton-driven (or sodium/proton-driven) ATPases are shown in bold red and include: M. mazei Gö1 (Becher & Müller, 1994; Pisa et al.,

2007), Methanosaeta thermophila (Inatomi et al., 1993) and M. barkeri (Blaut & Gottschalk, 1984; Müller et al., 1999). M. acetivorans C2A was

recently shown to have a sodium-proton driven ATPase (Grüber et al., 2014; Schlegel & Müller, 2013) and the residues considered crucial to

being allowing binding of both ions are indicated in bold, as are the corresponding amino acids in the M. boonei sequence directly above. IMG

gene numbers follow the colon. Blue shading has been added to indicate sequences that align with those of organisms predicted to have

sodium-driven ATPases and red shading indicates sequences that align with those of predicted proton-driven ATPases.

Organism Partial amino acid alignment
Methanospirillum hungatei JF-1:637896821 KAVGAGLAVG LAGVGSGLGE MGIGAAAMGA VAENKDMFGL ALLFTVLPET IVIFGLVVAL LL
Methanospirillum hungatei JF-1:637897383 VPIGAAIAFA GGAIATGIAQ SKIGAAGAGT VAERPESAGT VIVLEAIPET L VILGFVVAA MI
Methanosarcina mazei strain Gö1:638165281 KALGAAIAIA VTGLASAIAE KDIGTAAIGA MAENEGLFGK GLILTVIPET IVIFGLVVAL LI
Methanoregula boonei 6A8:640869605 KAIGAGLAVG LTGVGTGVAE MGIGAAAVGA IAENKDFFGL GLLFTVIPET IVIFGLVIAL LL
Methanosarcina acetivorans C2A: 638179041 KALGAALAIT VTGLASAWAE KEIGTAAIGA MAENEGLFGK GLILTVIPET IVIFGLVVAL LI
Methanosarcina barkeri str. fusaro: 637699281 KAIGASIAIA LTGIASAIAE KDIGTAAIGA MAENEGLFGK GLILTVIPET IVIFGLVVAL LI
Methanoculleus marisnigri JR1:640114955 SAVGAGLAVG LTGVGTGLAE MGIGAAAVGA TAENRDMFGL ALLFTVIPET IVIFGLVVAL LL
Methanosphaerula palustris E1-9c: 643571272 KAVGAGLAVG LAGIGTGLGE MGIGAAAMGA TAENKDMFGL ALLFTVIPET IVIFGLVVSL LL
Methanocella paludicola SANAE: 646465407 VAIGAGLAVG LAGIGSGIAE KDIGAAAVGA IAEDRSFFGQ GLIFTVIPET IVIFGLVIAI LL
Methanosaeta concilii GP6:650798510 IAVGAGLATG LAGIGAGVGE QGIGAAVVGV VAEEPGFLGK GLFLMLLPET LIIFGLAVSL IL
Methanocella paludicola SANAE: 646467386 IPLGAAIAFG AGAISTGFAQ ARIGSAGAGA LSERPELSGL IIILEAIPET LAILGFVVAA MI
Methanohalophilus mahii DSM 5219:646707499 KAIGAGLAVG LTGLASGIAE KDIGAAAIGA MAENEGLFGK GLIMTVIPET IVIFGLVVAL LI
Methanobacterium sp. AL-21:650750551 AAIGAGLAVG LAGLGSGIGQ GIAAAGSVGA VAEDPDMFAR GIIFTALPET QAIYGFLIAI LL
Methanobacterium sp. SWAN-1:650872332 AAIGAGVAVG FAALGSGIGQ GIASAGAVGA VAEDKSMFAQ GMVFTAIPET QAIYGFLISI LL
Methanopyrus kandleri AV19:638169043 AAIGAGLAAG VAGVGSGIGQ GIAAAAGAGA VAEDEATFGK AIVFSVLPET QAIYGLLTAI LI
Methanocaldococcus jannaschii DSM 
2661:638201515

GAVGAGLAVG IAGLGSGIGA GITGASGAGV VAEDPNKFGT AIVFQALPQT QGLYGFLVAI LI

Methanospirillum hungatei JF-1:637897394 MAIGAGIAVG CSAIGSGIGV GIVGSAASGV ISERSEKFGM ALVFTAIPQT QAIYGLLIAI LI
Methanothermobacter thermoautotrophicus:
638155490

AAIGAGVAVG FAGLGSGLGQ GIAAAESVGA VAENSDMFAR GIIFSTLPET QAIYGFLIAI LL

Methanococcus maripaludis C5:640166057 GAIGAGLAVG IAGLGSGIGA GITGASGAGV VAEDPNKFGT AIVFQALPQT QGLYGFLVAI LI
Methanobrevibacter smithii DSM 
2375:644143574

AAIGAGVAIG FAGLGSGLGQ GMAAAGSVGA VAEDNDMFAR GIIFSALPET QAIYGFLIAI LL

Methanosphaera stadtmanae DSM 
3091:637847029

AAIGAGVAVG FAALGSGIGQ GIASSASVGA VAEDSSMFAQ GLVFTAIPET QAIYGFLIAI LL

Methanobrevibacter smithii ATCC 
35061:640592228

AAIGAGVAIG FAGLGSGLGQ GMAAAGSVGA QAIYGFLIAI LL

Methanobrevibacter ruminantium
M1:646531773

AAIGAGVAIG FAGLGSGLGQ GMAAAGSVGA 

VAEDNDMFAR GIIFSALPET

VAEDNDMFAR GIIFSALPET QAIYGFLIAI LL

Methanococcus voltae A3:646858602 GAIGAGLAVG IAGLGSGIGA GITGASGAGV LAEDPKQFSK VIVFQALPQT QGLYGFLVAI LI
Methanotorris igneus Kol 5:650856311 GAIGAGLAVG IAGLGSGIGA GITGASGAGV VAEDPNKFGT AIVFQALPQT QGLYGFLVAI LI
Methanothermococcus okinawensis
IH1:650918276

GAVGAGLAVG IAGLGSGIGA GITGASGAGV VAEDPNKFGT AIVFQALPQT QGLYGFLVAI LI
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unclear whether the Mtr complex in M. boonei or other
Methanomicrobiales pumps Na+ or H+, or perhaps is not
a pump at all. Because of these fundamental differences in
the MtrE sequences between Methanomicrobiales and other
methanogens, the role of Mtr in their bioenergetics warrants
examination, especially since it is considered the only site for
energy conservation in these organisms.

Adaptation to low potassium concentrations

Similar to the case for Na+, the K+ concentrations in
McLean Bog porewater are extremely low, less than
25 mM (Bräuer et al., 2004), and cells typically accumulate
K+ (Epstein, 2003) as well as expel Na+. M. boonei is pre-
dicted to carry genes for three different K+ uptake mech-
anisms including the low-affinity trk genes that many
methanogens carry, in addition to the medium-affinity
kup genes and the ATP-driven high-affinity kdp genes,
both of which are more rarely found among methanogenic
archaea (Table S1). Only one other methanogen (seq-
uenced to date) carries all three predicted K+ uptake sys-
tems, Methanosphaerula palustris E1-9c, and it was also
isolated from a peatland ecosystem (Cadillo-Quiroz
et al., 2009; Cadillo-Quiroz et al., 2008), a fen in which
the pH was neutral but the K+ porewater concentrations
were only 3–8 mM (Dettling et al., 2007).

In Escherichia coli, the kdp uptake system shows both high
specificity and high affinity for potassium, and is required
for growth during extreme potassium limitation (Altendorf
& Epstein, 1996; Epstein, 2003; Epstein et al., 1990). E. coli
cultures with a mutation in the kdp genes have shown
growth deficiencies at K+ concentrations below 300 mM
(Rhoads et al., 1976). Highlighting its importance in
M. boonei, the kdpCAB operon has been duplicated and
can be identified in two locations in the genome (Fig. 2).
Compared to E. coli, both predicted KdpA proteins in
M. boonei (Mboo 0443 and 0894) have all four regions (I,
112-NTNWQ-116; II, 230-TNGGG-234; III, 343-SCGAV-
347; IV, 468-NNGSA-472; E. coli numbering) demonstrated
experimentally (Bertrand et al., 2004; Buurman et al., 1995;
Dorus et al., 2001; Schrader et al., 2000; van der Laan et al.,
2002) and in 3D structural models (Greie, 2011; Hu et al.,
2008) to be responsible for K+ binding. Originally ident-
ified by the HGT-detection program, DarkHorse (Podell
& Gaasterland, 2007), the predicted KdpA proteins in M.
boonei and in other methanogens cluster phylogenetically
within the Proteobacteria, perhaps most closely resembling
those of Geobacter spp. (Fig. 3). Since there are apparently
three closely related clades of methanogen KdpA protein
sequences, it is unclear how many transfer events have
occurred. Moreover, the KdpC protein is predicted to be
fused to the N-terminal of KdpA (Fig. 2) in both sets of
genes, an arrangement shared with Methanomassiliicoccus
luminyensis, a methanogen isolated from human faeces
(Dridi et al., 2012) belonging to a new phylum related to
Thermoplasma and only able to use H2 and methanol
for methanogenesis. All other methanoarchaea, including
the closely related Methanosphaerula, have the canonical

kdpABC gene order. Thus, the arrangement and close phy-
logenetic relationship of their kdpCA genes relative to that
of other organisms suggests that a gene transfer event
occurred between ancestors of M. boonei and M.
luminyensis.

In E. coli and many other bacteria, KdpD is a membrane-
boundosmosensitiveK+-sensinghistidine kinase component,
and KdpE is the response regulator of a two-component
transcriptional regulatory system that induces kdp genes
when K+ is low (Nakashima et al., 1992; Poolman &
Glaasker, 1998) (Fig. 2). A number of methanoarchaea with
kdp genes possess a kdpD gene (Table S1). In M. boonei, the
kdpD gene is predicted to encode a truncated protein lacking
the histidine kinase domain (Table S2) and to also lack kdpE
compared to bacteria. Thus, it is unlikely that KdpD is a tran-
scriptional regulator and it may play some other role in reg-
ulating activity of the Kdp or other proteins, since it still
maintains membrane-bound sensing domains. Some Bac-
teria, including Cyanobacteria and Deinococcus radiodurans,

Geobacter metalireducens GS-15: NC_007517

Geobacter sulfurreducens PCA: NC_0029C9

Methanoregula boonei 6A8: NC_009712

2756656

2723146

879035

426048

CA 

CA 

A B C D E

A B C D E

B 

B 

‘D’

Fig. 2. Diagram of high affinity, ATP-driven potassium uptake
(kdp) gene arrangement in Geobacter spp., which shows the
canonical arrangement, compared to the two kdp operons [Mboo
0894-6 (top) and Mboo 0443-4 (bottom)] in M. boonei 6A8.
This figure was modified from an image on the IMG website
(https://img.jgi.doe.gov/) (Markowitz et al., 2006). Genes encod-
ing for KdpA, KdpB, KdpC, KdpD or KdpE subunits are indicated
by an A, B, C, D or E, respectively. The fused kdpC/A gene is
indicated by a CA and the predicted pseudogene kpdD is indi-
cated by a ‘D’.
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also contain a truncated kdpD and lack kdpE (Ballal et al.,

2007). Although kdpF is also absent, this gene is non-essential

for potassium transport in vivo, according to studies in E. coli

(Gaßel et al., 1999).

Similarly, the kup genes may have also been horizontally

transferred between Geobacteraceae and Methanosarcina

spp. and several members of the Methanomicrobiales

(Fig. 4). However, the data are less robust since theGeobacter
spp. KupA protein sequences do not cluster with other
Proteobacteria, so the direction of transfer is unclear. Still,
it’s most likely that the methanoarchaeal KupA sequences
were derived from Bacteria, according to the phylogenetic
clustering (Fig. 4). Essentially all of the methanoarchaea
possess low-affinity potassium uptake genes (trk; Table
S1); thus, these genes will not be discussed.

Methanoregula boonei 6A8: YP_001403604

Methanomassiliicoccus luminyensis B10: CAJE01000003

Streptomyces avermitilis MA-4680: NP_822094
Mycobacterium tuberculosis H37Rv: NP_215545

Chlorobium limicola DSM 245: ZP_00512270
Syntrophobacter fumaroxidans MPOB: YP_846733

Bacteroides fragilis YCH46: YP_097861

Gloeobacter violaceus PCC 7421: NP_923519
Anabaena variabilis ATCC 29413: YP_321714

Shewanella sp. W3-18-1: YP_962266
Halobacterium sp. NRC-1: NP_395708

Methanocella paludicola SANAE: 2505973364
Methanocella conradii HZ254: CP003243

Thermoplasma acidophilum DSM 1728: NP_394765
Thermoplasma volcanium GSS1: NP_111018

Picrophilus torridus DSM 9790: YP_022935

Thermofilum pendens Hrk 5  YP_920879
Ferroplasma acidarmanus fer1: ZP_0170:8440

Clostridium acetobutylicum ATCC 824: NP_350263
Thermoanaerobacter tengcongensis MB4: NP_623586

Geobacillus kaustophilus HTA426: YP_149101
Bacillus thuringiensis serovar israelensis ATCC 35646: ZP_00741126

Deinococcus radiodurans R1: NP_051619

Pseudomonas aeruginosa PAO1: NP_250324
Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130: YP_000964

Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough: YP_012547

Bradyrhizobium japonicum USDA 110: NP_773419
Methylobacterium radiotolerans JCM 2831: ACB22235
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CONCLUSION

Organisms related to M. boonei in the E1/E2 cluster, R10, or
fen cluster are widespread throughout acidic to moderately
acidic peatlands in Germany (Hamberger et al., 2008; Wüst

et al., 2009), England (Edwards et al., 1998; Hales et al.,
1996), Russia (Kotsyurbenko et al., 2007), Scandinavia
(Galand et al., 2005; Høj et al., 2005), the United States
(Basiliko et al., 2003; Cadillo-Quiroz et al., 2006; Hawkins
et al., 2014) and Canada (Godin et al., 2012; Yavitt et al.,
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2006). Further, this group tends to dominate in ombrotrophic

bogs and is often outcompeted in minerotrophic fens, where

themethanogenic community becomesmore diverse (Galand

et al., 2005; Kotsyurbenko, 2010; Kotsyurbenko et al., 2007).

For example, microbial diversity was shown to increase

along a gradient from pH 4.2 in an ombrotrophic bog to 5.1

in amesotrophic fen in Finland (Juottonen et al., 2005). Simi-

larly, a fen in Minnesota was found to have higher diversity

than that of a nearby bog (Lin et al., 2012). The genome of

M. boonei harbours evidence of adaptation to a proton-rich,

sodium-poor and potassium-poor environment, which

may, in part, explain the cosmopolitan success of this and

related organisms in acidic peat bogs.
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