1887

Abstract

RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate -translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000144
2015-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/2019.html?itemId=/content/journal/micro/10.1099/mic.0.000144&mimeType=html&fmt=ahah

References

  1. Aoki S.K., Pamma R., Hernday A.D., Bickham J.E., Braaten B.A., Low D.A. 2005; Contact-dependent inhibition of growth in Escherichia coli . Science 309:1245–1248 [View Article][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008 [View Article][PubMed]
    [Google Scholar]
  3. Bowman C.M., Dahlberg J.E., Ikemura T., Konisky J., Nomura M. 1971; Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo . Proc Natl Acad Sci U S A 68:964–968 [View Article][PubMed]
    [Google Scholar]
  4. Chadani Y., Matsumoto E., Aso H., Wada T., Kutsukake K., Sutou S., Abo T. 2011a; trans-translation-mediated tight regulation of the expression of the alternative ribosome-rescue factor ArfA in Escherichia coli . Genes Genet Syst 86:151–163 [View Article][PubMed]
    [Google Scholar]
  5. Chadani Y., Ono K., Kutsukake K., Abo T. 2011b; Escherichia coli YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-mediated pathways. Mol Microbiol 80:772–785 [View Article][PubMed]
    [Google Scholar]
  6. Cook G.M., Robson J.R., Frampton R.A., McKenzie J., Przybilski R., Fineran P.C., Arcus V.L. 2013; Ribonucleases in bacterial toxin-antitoxin systems. Biochim Biophys Acta 1829:523–531 [View Article][PubMed]
    [Google Scholar]
  7. Cooper C.R., Daugherty A.J., Tachdjian S., Blum P.H., Kelly R.M. 2009; Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus . Biochem Soc Trans 37:123–126 [View Article][PubMed]
    [Google Scholar]
  8. Deutscher M.P. 2006; Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666 [View Article][PubMed]
    [Google Scholar]
  9. Diner E.J., Beck C.M., Webb J.S., Low D.A., Hayes C.S. 2012; Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev 26:515–525 [View Article][PubMed]
    [Google Scholar]
  10. Frischmeyer P.A., van Hoof A., O'Donnell K., Guerrerio A.L., Parker R., Dietz H.C. 2002; An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261 [View Article][PubMed]
    [Google Scholar]
  11. Fujii K., Kitabatake M., Sakata T., Miyata A., Ohno M. 2009; A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev 23:963–974 [View Article][PubMed]
    [Google Scholar]
  12. Fujii K., Kitabatake M., Sakata T., Ohno M. 2012; 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J 31:2579–2589 [View Article][PubMed]
    [Google Scholar]
  13. Garza-Sánchez F., Gin J.G., Hayes C.S. 2008; Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli . J Mol Biol 378:505–519 [View Article][PubMed]
    [Google Scholar]
  14. Garza-Sánchez F., Schaub R.E., Janssen B.D., Hayes C.S. 2011; tmRNA regulates synthesis of the ArfA ribosome rescue factor. Mol Microbiol 80:1204–1219 [View Article][PubMed]
    [Google Scholar]
  15. Graille M., Mora L., Buckingham R.H., van Tilbeurgh H., de Zamaroczy M. 2004; Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein. EMBO J 23:1474–1482 [View Article][PubMed]
    [Google Scholar]
  16. Hajnsdorf E., Braun F., Haugel-Nielsen J., Régnier P. 1995; Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli . Proc Natl Acad Sci U S A 92:3973–3977 [View Article][PubMed]
    [Google Scholar]
  17. Handa Y., Inaho N., Nameki N. 2011; YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res 39:1739–1748 [View Article][PubMed]
    [Google Scholar]
  18. Hayes C.S., Koskiniemi S., Ruhe Z.C., Poole S.J., Low D.A. 2014; Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb Perspect Med 4:a010025 [View Article][PubMed]
    [Google Scholar]
  19. Himeno H., Nameki N., Kurita D., Muto A., Abo T. 2014; Ribosome rescue systems in bacteria. Biochimie 114:102–112[PubMed] [CrossRef]
    [Google Scholar]
  20. Ingle C.A., Kushner S.R. 1996; Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc Natl Acad Sci U S A 93:12926–12931 [View Article][PubMed]
    [Google Scholar]
  21. James R., Kleanthous C., Moore G.R. 1996; The biology of E colicins: paradigms and paradoxes. Microbiology 142:1569–1580 [View Article][PubMed]
    [Google Scholar]
  22. Karzai A.W., Susskind M.M., Sauer R.T. 1999; SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J 18:3793–3799 [View Article][PubMed]
    [Google Scholar]
  23. Kaufmann G. 2000; Anticodon nucleases. Trends Biochem Sci 25:70–74 [View Article][PubMed]
    [Google Scholar]
  24. Keiler K.C. 2015; Mechanisms of ribosome rescue in bacteria. Nat Rev Microbiol 13:285–297 [View Article][PubMed]
    [Google Scholar]
  25. Keiler K.C., Waller P.R., Sauer R.T. 1996; Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993 [View Article][PubMed]
    [Google Scholar]
  26. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. 1994; A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli . Proc Natl Acad Sci U S A 91:9223–9227 [View Article][PubMed]
    [Google Scholar]
  27. LaRiviere F.J., Cole S.E., Ferullo D.J., Moore M.J. 2006; A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell 24:619–626 [View Article][PubMed]
    [Google Scholar]
  28. Losson R., Lacroute F. 1979; Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci U S A 76:5134–5137 [View Article][PubMed]
    [Google Scholar]
  29. Maquat L.E., Kinniburgh A.J., Rachmilewitz E.A., Ross J. 1981; Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell 27:543–553 [View Article][PubMed]
    [Google Scholar]
  30. Masaki H., Ohta T. 1985; Colicin E3 and its immunity genes. J Mol Biol 182:217–227 [View Article][PubMed]
    [Google Scholar]
  31. Morad I., Chapman-Shimshoni D., Amitsur M., Kaufmann G. 1993; Functional expression and properties of the tRNA(Lys)-specific core anticodon nuclease encoded by Escherichia coli prrC. J Biol Chem 268:26842–26849[PubMed]
    [Google Scholar]
  32. Nakano H., Goto S., Nakayashiki T., Inokuchi H. 2001; Temperature-sensitive mutations in various genes of Escherichia coli K12 can be suppressed by the ssrA gene for 10Sa RNA (tmRNA). Mol Genet Genomics 265:615–621 [View Article][PubMed]
    [Google Scholar]
  33. O'Hara E.B., Chekanova J.A., Ingle C.A., Kushner Z.R., Peters E., Kushner S.R. 1995; Polyadenylylation helps regulate mRNA decay in Escherichia coli . Proc Natl Acad Sci U S A 92:1807–1811 [View Article][PubMed]
    [Google Scholar]
  34. Ogawa T., Tomita K., Ueda T., Watanabe K., Uozumi T., Masaki H. 1999; A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283:2097–2100 [View Article][PubMed]
    [Google Scholar]
  35. Ogawa T., Hidaka M., Kohno K., Masaki H. 2009; Colicin E5 ribonuclease domain cleaves Saccharomyces cerevisiae tRNAs leading to impairment of the cell growth. J Biochem 145:461–466 [View Article][PubMed]
    [Google Scholar]
  36. Pedersen K., Zavialov A.V., Pavlov M.Y., Elf J., Gerdes K., Ehrenberg M. 2003; The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112:131–140 [View Article][PubMed]
    [Google Scholar]
  37. Shigematsu M., Ogawa T., Kido A., Kitamoto H.K., Hidaka M., Masaki H. 2009; Cellular and transcriptional responses of yeast to the cleavage of cytosolic tRNAs induced by colicin D. Yeast 26:663–673 [View Article][PubMed]
    [Google Scholar]
  38. Shimizu Y. 2012; ArfA recruits RF2 into stalled ribosomes. J Mol Biol 423:624–631 [View Article][PubMed]
    [Google Scholar]
  39. Tanaka N., Shuman S. 2011; RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. J Biol Chem 286:7727–7731 [View Article][PubMed]
    [Google Scholar]
  40. Tomita K., Ogawa T., Uozumi T., Watanabe K., Masaki H. 2000; A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A 97:8278–8283 [View Article][PubMed]
    [Google Scholar]
  41. van Hoof A., Frischmeyer P.A., Dietz H.C., Parker R. 2002; Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264 [View Article][PubMed]
    [Google Scholar]
  42. Winther K.S., Gerdes K. 2011; Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A 108:7403–7407 [View Article][PubMed]
    [Google Scholar]
  43. Xu H.S., Roberts N., Singleton F.L., Attwell R.W., Grimes D.J., Colwell R.R. 1982; Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323 [View Article][PubMed]
    [Google Scholar]
  44. Yajima S., Nakanishi K., Takahashi K., Ogawa T., Hidaka M., Kezuka Y., Nonaka T., Ohsawa K., Masaki H. 2004; Relation between tRNase activity and the structure of colicin D according to X-ray crystallography. Biochem Biophys Res Commun 322:966–973 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000144
Loading
/content/journal/micro/10.1099/mic.0.000144
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error