1887

Abstract

Various phenotypes ranging from biofilm formation to pigment production have been shown to be regulated by quorum sensing (QS) in many bacteria. However, studies of the regulation of pigments produced by marine bacteria in saline conditions and of biofilm-associated phenotypes are scarcer. This study focuses on the demonstration of the existence of a QS communication system involving -acylhomoserine lactones (AHLs) in the Mediterranean Sea strain TC14. We have investigated whether TC14 produces the violacein pigment, and whether intrinsic or exogenous AHLs could influence its production and modulate biofilm-associated phenotypes. Here, we demonstrate that the purple pigment produced by TC14 is violacein. The study shows that in planktonic conditions, TC14 produces more pigment in the medium in which it grows less. Using different approaches, the results also show that TC14 does not produce intrinsic AHLs in our conditions. When exogenous AHLs are added in planktonic conditions, the production of violacein is upregulated by C-, C-, 3-oxo-C and 3-oxo-C-HSLs (homoserine lactones), and downregulated by 3-oxo-C-HSL. In sessile conditions, 3-oxo-C-HSL upregulates the production of violacein. The study of the biofilm-associated phenotypes shows that oxo-derived-HSLs decrease adhesion, swimming and biofilm formation. While 3-oxo-C and 3-oxo-C-HSLs decrease both swimming and adhesion, 3-oxo-C-HSLs decrease not only violacein production in planktonic conditions but also swimming, adhesion and more subtly biofilm formation. Therefore, TC14 may possess a functional LuxR-type QS receptor capable of sensing extrinsic AHLs, which controls violacein production, motility, adhesion and biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000147
2015-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/2039.html?itemId=/content/journal/micro/10.1099/mic.0.000147&mimeType=html&fmt=ahah

References

  1. Ahmad W.A., Yusof N.Z., Nordin N., Zakaria Z.A., Rezali M.F. 2012; Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167:1220–1234 [View Article][PubMed]
    [Google Scholar]
  2. Ahmer B.M.M., van Reeuwijk J., Timmers C.D., Valentine P.J., Heffron F. 1998; Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180:1185–1193[PubMed]
    [Google Scholar]
  3. Andersen J.B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B.B., Molin S., Givskov M. 2001; gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585 [View Article][PubMed]
    [Google Scholar]
  4. Antônio R.V., Creczynski-Pasa T.B. 2004; Genetic analysis of violacein biosynthesis by Chromobacterium violaceum . Genet Mol Res 3:85–91[PubMed]
    [Google Scholar]
  5. Anwar H., Strap J.L., Costerton J.W. 1992; Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351 [View Article][PubMed]
    [Google Scholar]
  6. Asahi Y., Noiri Y., Igarashi J., Asai H., Suga H., Ebisu S. 2010; Effects of N-acyl homoserine lactone analogues on Porphyromonas gingivalis biofilm formation. J Periodontal Res 45:255–261 [View Article][PubMed]
    [Google Scholar]
  7. Bassler B.L. 2002; Small talk: cell-to-cell communication in bacteria. Cell 109:421–424 [View Article][PubMed]
    [Google Scholar]
  8. Bauer W.D., Mathesius U., Teplitski M. 2005; Eukaryotes deal with bacterial quorum sensing. ASM News 71:129–135
    [Google Scholar]
  9. Bernbom N., Ng Y.Y., Kjelleberg S., Harder T., Gram L. 2011; Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol 77:8557–8567 [View Article][PubMed]
    [Google Scholar]
  10. Brian-Jaisson F., Ortalo-Magné A., Guentas-Dombrowsky L., Armougom F., Blache Y., Molmeret M. 2014; Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation. Microb Ecol 68:94–110 [View Article][PubMed]
    [Google Scholar]
  11. Burt S.A., Ojo-Fakunle V.T.A., Woertman J., Veldhuizen E.J.A. 2014; The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9:e93414 [View Article][PubMed]
    [Google Scholar]
  12. Campbell J., Lin Q., Geske G.D., Blackwell H.E. 2009; New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4:1051–1059 [View Article][PubMed]
    [Google Scholar]
  13. Camps M., Briand J.-F., Guentas-Dombrowsky L., Culioli G., Bazire A., Blache Y. 2011; Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. Mar Pollut Bull 62:1032–1040 [View Article][PubMed]
    [Google Scholar]
  14. Case R.J., Labbate M., Kjelleberg S. 2008; AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349 [View Article][PubMed]
    [Google Scholar]
  15. Characklis W.G. 1981; Bioengineering report. Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960 [View Article][PubMed]
    [Google Scholar]
  16. Chernin L.S., Winson M.K., Thompson J.M., Haran S., Bycroft B.W., Chet I., Williams P., Stewart G.S.A.B. 1998; Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441[PubMed]
    [Google Scholar]
  17. Chu W., Vattem D.A., Maitin V., Barnes M.B., McLean R.J.C. 2011; Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum . In Quorum Sensing (Methods in Molecular Biology 692 pp. 3–19 Edited by Rumbaugh K. P. New York: [View Article] Humana Press;
    [Google Scholar]
  18. Daniels R., Vanderleyden J., Michiels J. 2004; Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289 [View Article][PubMed]
    [Google Scholar]
  19. Danovaro R., Company J.B., Corinaldesi C., D'Onghia G., Galil B., Gambi C., Gooday A.J., Lampadariou N., Luna G.M., other authors. 2010; Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 5:e11832 [View Article][PubMed]
    [Google Scholar]
  20. Davey M.E., O'Toole G.A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [View Article][PubMed]
    [Google Scholar]
  21. Davies D.G., Chakrabarty A.M., Geesey G.G. 1993; Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa . Appl Environ Microbiol 59:1181–1186[PubMed]
    [Google Scholar]
  22. Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., Greenberg E.P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [View Article][PubMed]
    [Google Scholar]
  23. de Kievit T.R., Iglewski B.H. 2000; Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 [View Article][PubMed]
    [Google Scholar]
  24. de Oca-Mejía M.M., Castillo-Juárez I., Martínez-Vázquez M., Soto-Hernandez M., García-Contreras R. 2015; Influence of quorum sensing in multiple phenotypes of the bacterial pathogen Chromobacterium violaceum . Pathog Dis 73:1–4[PubMed]
    [Google Scholar]
  25. Dheilly A., Soum-Soutéra E., Klein G.L., Bazire A., Compère C., Haras D., Dufour A. 2010; Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl Environ Microbiol 76:3452–3461 [View Article][PubMed]
    [Google Scholar]
  26. Dobretsov S., Teplitski M., Paul V. 2009; Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427 [View Article][PubMed]
    [Google Scholar]
  27. Dobretsov S., Teplitski M., Bayer M., Gunasekera S., Proksch P., Paul V.J. 2011; Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27:893–905 [View Article][PubMed]
    [Google Scholar]
  28. Durán N., Justo G.Z., Ferreira C.V., Melo P.S., Cordi L., Martins D. 2007; Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133 [View Article][PubMed]
    [Google Scholar]
  29. Durán M., Ponezi A.N., Faljoni-Alario A., Teixeira M.F.S., Justo G.Z., Durán N. 2012; Potential applications of violacein: a microbial pigment. Med Chem Res 21:1524–1532 [View Article]
    [Google Scholar]
  30. Eberhard A., Burlingame A.L., Eberhard C., Kenyon G.L., Nealson K.H., Oppenheimer N.J. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449 [View Article][PubMed]
    [Google Scholar]
  31. Egan S., Thomas T., Holmström C., Kjelleberg S. 2000; Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca . Environ Microbiol 2:343–347 [View Article][PubMed]
    [Google Scholar]
  32. Egan S., Holmström C., Kjelleberg S. 2001; Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 51:1499–1504[PubMed] [CrossRef]
    [Google Scholar]
  33. Evans K., Passador L., Srikumar R., Tsang E., Nezezon J., Poole K. 1998; Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa . J Bacteriol 180:5443–5447[PubMed]
    [Google Scholar]
  34. Fuqua C., Greenberg E.P. 2002; Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695 [View Article][PubMed]
    [Google Scholar]
  35. Fuqua W.C., Winans S.C., Greenberg E.P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275[PubMed]
    [Google Scholar]
  36. García-Aljaro C., Vargas-Cespedes G.J., Blanch A.R. 2012; Detection of acylated homoserine lactones produced by Vibrio spp. and related species isolated from water and aquatic organisms. J Appl Microbiol 112:383–389 [View Article][PubMed]
    [Google Scholar]
  37. Gardères J., Taupin L., Saïdin J.B., Dufour A., Le Pennec G. 2012; N-acyl homoserine lactone production by bacteria within the sponge Suberites domuncula (Olivi, 1792) (Porifera, Demospongiae). Mar Biol 159:1685–1692 [View Article]
    [Google Scholar]
  38. Geske G.D., Wezeman R.J., Siegel A.P., Blackwell H.E. 2005; Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127:12762–12763 [View Article][PubMed]
    [Google Scholar]
  39. Givskov M., deNys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P.D., Kjelleberg S. 1996; Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622[PubMed]
    [Google Scholar]
  40. Givskov M., Östling J., Eberl L., Lindum P.W., Christensen A.B., Christiansen G., Molin S., Kjelleberg S. 1998; Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742–745[PubMed]
    [Google Scholar]
  41. Giwercman B., Jensen E.T., Høiby N., Kharazmi A., Costerton J.W. 1991; Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010 [View Article][PubMed]
    [Google Scholar]
  42. Grasland B., Mitalane J., Briandet R., Quemener E., Meylheuc T., Linossier I., Vallee-Rehel K., Haras D. 2003; Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19:307–313 [View Article][PubMed]
    [Google Scholar]
  43. Haras D. 2005; Biofilms.térations des matériaux: de l'analyse du phénomène aux stratégies de prévention. Mater Tech 93:S27–S41 [View Article]
    [Google Scholar]
  44. Hayashida-Soiza G., Uchida A., Mori N., Kuwahara Y., Ishida Y. 2008; Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol 105:1672–1677 [View Article][PubMed]
    [Google Scholar]
  45. Hentzer M., Riedel K., Rasmussen T.B., Heydorn A., Andersen J.B., Parsek M.R., Rice S.A., Eberl L., Molin S., other authors. 2002; Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102[PubMed] [CrossRef]
    [Google Scholar]
  46. Holden M.T.G., Ram Chhabra S., de Nys R., Stead P., Bainton N.J., Hill P.J., Manefield M., Kumar N., Labatte M., other authors. 1999; Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266 [View Article][PubMed]
    [Google Scholar]
  47. Hansen G.H., Sørheim R. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241 [View Article]
    [Google Scholar]
  48. Huang Y.-L., Ki J.-S., Lee O.O., Qian P.-Y. 2009; Evidence for the dynamics of acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. ISME J 3:296–304 [View Article][PubMed]
    [Google Scholar]
  49. Huber B., Riedel K., Hentzer M., Heydorn A., Gotschlich A., Givskov M., Molin S., Eberl L. 2001; The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528[PubMed] [CrossRef]
    [Google Scholar]
  50. James S.G., Holmström C., Kjelleberg S. 1996; Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 62:2783–2788[PubMed]
    [Google Scholar]
  51. Kjelleberg S., Molin S. 2002; Is there a role for quorum sensing signals in bacterial biofilms?. Curr Opin Microbiol 5:254–258 [View Article][PubMed]
    [Google Scholar]
  52. Klein G.L., Soum-Soutéra E., Guede Z., Bazire A., Compère C., Dufour A. 2011; The anti-biofilm activity secreted by a marine Pseudoalteromonas strain. Biofouling 27:931–940 [View Article][PubMed]
    [Google Scholar]
  53. Komiya-Ito A., Ito T., Yamanaka A., Okuda K., Yamada S., Kato T. 2006; N-Tetradecanoyl homoserine lactone, signaling compound for quorum sensing, inhibits Porphyromonas gingivalis growth. Res J Microbiol 1:353–359 [View Article]
    [Google Scholar]
  54. Kumar M.A., Anandapandian K.T.K., Parthiban K. 2011; Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz Arch Biol Technol 54:259–265 [View Article]
    [Google Scholar]
  55. Labbate M., Queck S.Y., Koh K.S., Rice S.A., Givskov M., Kjelleberg S. 2004; Quorum sensing-controlled biofilm development in. Serratia liquefaciens MG1. J Bacteriol 186:692–698 [View Article][PubMed]
    [Google Scholar]
  56. Lee J., Jayaraman A., Wood T.K. 2007; Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42 [View Article][PubMed]
    [Google Scholar]
  57. Lee J.-W., Nam J.-H., Kim Y.-H., Lee K.-H., Lee D.-H. 2008; Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46:174–182 [View Article][PubMed]
    [Google Scholar]
  58. Li Y.-H., Tian X. 2012; Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12:2519–2538 [View Article][PubMed]
    [Google Scholar]
  59. Lu Y., Wang L., Xue Y., Zhang C., Xing X.-H., Lou K., Zhang Z., Li Y., Zhang G., other authors. 2009; Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang. China. Biochem Eng J 43:135–141 [View Article]
    [Google Scholar]
  60. Makemson J.C., Fulayfil N.R., Landry W., Van Ert L.M., Wimpee C.F., Widder E.A., Case J.F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [View Article][PubMed]
    [Google Scholar]
  61. Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. 1999; Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291 [View Article][PubMed]
    [Google Scholar]
  62. Mårdén P., Tunlid A., Malmcrona-Friberg K., Odham G., Kjelleberg S. 1985; Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch Microbiol 142:326–332 [View Article]
    [Google Scholar]
  63. Matz C., Deines P., Boenigk J., Arndt H., Eberl L., Kjelleberg S., Jürgens K. 2004; Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599 [View Article][PubMed]
    [Google Scholar]
  64. McClean K.H., Winson M.K., Fish L., Taylor A., Chhabra S.R., Camara M., Daykin M., Lamb J.H., Swift S., other authors. 1997; Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [View Article][PubMed]
    [Google Scholar]
  65. McLean R.J.C., Pierson L.S. III, Fuqua C. 2004; A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360 [View Article][PubMed]
    [Google Scholar]
  66. Mendes A.S., de Carvalho J.E., Duarte M.C.T., Durán N., Bruns R.E. 2001; Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol Lett 23:1963–1969 [View Article]
    [Google Scholar]
  67. Miller M.B., Bassler B.L. 2001; Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 [View Article][PubMed]
    [Google Scholar]
  68. Morin D., Grasland B., Vallée-Réhel K., Dufau C., Haras D. 2003; On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92 [View Article][PubMed]
    [Google Scholar]
  69. Morohoshi T., Kato M., Fukamachi K., Kato N., Ikeda T. 2008; N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279:124–130 [View Article][PubMed]
    [Google Scholar]
  70. Morohoshi T., Fukamachi K., Kato M., Kato N., Ikeda T. 2010; Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472. Biosci Biotechnol Biochem 74:2116–2119 [View Article][PubMed]
    [Google Scholar]
  71. Pantanella F., Berlutti F., Passariello C., Sarli S., Morea C., Schippa S. 2007; Violacein and biofilm production in Janthinobacterium lividum . J Appl Microbiol 102:992–999[PubMed]
    [Google Scholar]
  72. Pearson J.P., Van Delden C., Iglewski B.H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210[PubMed]
    [Google Scholar]
  73. Pesci E.C., Milbank J.B.J., Pearson J.P., McKnight S., Kende A.S., Greenberg E.P., Iglewski B.H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:11229–11234 [View Article][PubMed]
    [Google Scholar]
  74. Rutherford S.T., Bassler B.L. 2012; Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427 [View Article][PubMed]
    [Google Scholar]
  75. Skovhus T.L., Holmström C., Kjelleberg S., Dahllöf I. 2007; Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol 61:348–361 [View Article][PubMed]
    [Google Scholar]
  76. Smith J.N., Ahmer B.M.M. 2003; Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 185:1357–1366 [View Article][PubMed]
    [Google Scholar]
  77. Srivastava D., Waters C.M. 2012; A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J Bacteriol 194:4485–4493 [View Article][PubMed]
    [Google Scholar]
  78. Steindler L., Venturi V. 2007; Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9 [View Article][PubMed]
    [Google Scholar]
  79. Subramoni S., Venturi V. 2009; LuxR-family ‘solos’: bachelor sensors/regulators of signalling molecules. Microbiology 155:1377–1385 [View Article][PubMed]
    [Google Scholar]
  80. Sutherland I. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9[PubMed] [CrossRef]
    [Google Scholar]
  81. Visick K.L., Foster J., Doino J., McFall-Ngai M., Ruby E.G. 2000; Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586 [View Article][PubMed]
    [Google Scholar]
  82. Wagner V.E., Bushnell D., Passador L., Brooks A.I., Iglewski B.H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [View Article][PubMed]
    [Google Scholar]
  83. Wang Y., Ikawa A., Okaue S., Taniguchi S., Osaka I., Yoshimoto A., Kishida Y., Arakawa R., Enomoto K. 2008; Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas . Biosci Biotechnol Biochem 72:1958–1961 [View Article][PubMed]
    [Google Scholar]
  84. Whitehead N.A., Barnard A.M.L., Slater H., Simpson N.J.L., Salmond G.P.C. 2001; Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404 [View Article][PubMed]
    [Google Scholar]
  85. Yada S., Wang Y., Zou Y., Nagasaki K., Hosokawa K., Osaka I., Arakawa R., Enomoto K. 2008; Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol (NY) 10:128–132 [View Article][PubMed]
    [Google Scholar]
  86. Yang L.H., Xiong H., Lee O.O., Qi S.H., Qian P.Y. 2007; Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630 [View Article][PubMed]
    [Google Scholar]
  87. Yebra D.M., Kiil S., Dam-Johansen K. 2004; Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000147
Loading
/content/journal/micro/10.1099/mic.0.000147
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error