1887

Abstract

Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe , five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σ or a σ consensus promoter upstream of each gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of , SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000162
2015-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2098.html?itemId=/content/journal/micro/10.1099/mic.0.000162&mimeType=html&fmt=ahah

References

  1. Bahl H., Andersch W., Gottschalk G. (1982). Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostatEur J Appl Microbiol Biotechnol 15201205 [View Article]. [Google Scholar]
  2. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye bindingAnal Biochem 72248254 [View Article][PubMed]. [Google Scholar]
  3. Cabrera-Martinez R.M., Mason J.M., Setlow B., Waites W.M., Setlow P. (1989). Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans sporesFEMS Microbiol Lett 61139143 [View Article][PubMed]. [Google Scholar]
  4. Carrillo-Martinez Y., Setlow P. (1994). Properties of Bacillus subtilis small, acid-soluble spore proteins with changes in the sequence recognized by their specific proteaseJ Bacteriol 17653575363[PubMed]. [Google Scholar]
  5. Carroll T.M. (2008). Germination protease: an atypical aspartic acid protease in Bacillus and ClostridiumDoctoral dissertation. Paper AAI3313266. http://digitalcommons.uconn.edu/dissertations/AAI3313266 . [Google Scholar]
  6. Carroll T.M., Setlow P. (2005). Site-directed mutagenesis and structural studies suggest that the germination protease, GPR, in spores of Bacillus species is an atypical aspartic acid proteaseJ Bacteriol 18771197125 [View Article][PubMed]. [Google Scholar]
  7. Connors M.J., Mason J.M., Setlow P. (1986). Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis sporesJ Bacteriol 166417425[PubMed]. [Google Scholar]
  8. Driks A. (2002). Proteins of the spore core and coat [View Article] In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 527535. Edited by Sonenshein A. L., Hoch J. A., Losick R.Washington, DCAmerican Society for Microbiology. [Google Scholar]
  9. Dürre P. (2005). Sporulation in clostridia (genetics). In Handbook on Clostridia, pp. 659669. Edited by Dürre P.Boca Raton, FLCRC Press [View Article]. [Google Scholar]
  10. Dürre P. (2011). Fermentative production of butanol – the academic perspectiveCurr Opin Biotechnol 22331336 [View Article][PubMed]. [Google Scholar]
  11. Dürre P., Hollergschwandner C. (2004). Initiation of endospore formation in Clostridium acetobutylicumAnaerobe 106974 [View Article][PubMed]. [Google Scholar]
  12. Fischer R.J., Oehmcke S., Meyer U., Mix M., Schwarz K., Fiedler T., Bahl H. (2006). Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pHJ Bacteriol 18854695478 [View Article][PubMed]. [Google Scholar]
  13. Francesconi S.C., MacAlister T.J., Setlow B., Setlow P. (1988). Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilisJ Bacteriol 17059635967. [Google Scholar]
  14. Galperin M.Y., Mekhedov S.L., Puigbo P., Smirnov S., Wolf Y.I., Rigden D.J. (2012). Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genesEnviron Microbiol 1428702890 [View Article][PubMed]. [Google Scholar]
  15. Ge Y., Wu J., Xiao J., Yu J. (2011). Exploration of the binding mode of α/β-type small acid soluble proteins (SASPs) with DNAJ Mol Model 1731833193 [View Article][PubMed]. [Google Scholar]
  16. Girbal L., von Abendroth G., Winkler M., Benton P.M., Meynial-Salles I., Croux C., Peters J.W., Happe T., Soucaille P. (2005). Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activitiesAppl Environ Microbiol 7127772781 [View Article][PubMed]. [Google Scholar]
  17. Hackett R.H., Setlow P. (1983). Enzymatic activity of precursors of Bacillus megaterium spore proteaseJ Bacteriol 153375378[PubMed]. [Google Scholar]
  18. Hayes C.S., Setlow P. (2001). An α/β-type, small, acid-soluble spore protein which has very high affinity for DNA prevents outgrowth of Bacillus subtilis sporesJ Bacteriol 18326622666 [View Article][PubMed]. [Google Scholar]
  19. Holmgren A. (1995). Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfideStructure 3239243 [View Article][PubMed]. [Google Scholar]
  20. Illades-Aguiar B., Setlow P. (1994). Autoprocessing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acidJ Bacteriol 17670327037[PubMed]. [Google Scholar]
  21. Janssen H., Grimmler C., Ehrenreich A., Bahl H., Fischer R.J. (2012). A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum – solvent stress caused by a transient n-butanol pulseJ Biotechnol 161354365 [View Article][PubMed]. [Google Scholar]
  22. Johnson W.C., Tipper D.J. (1981). Acid-soluble spore proteins of Bacillus subtilisJ Bacteriol 146972982[PubMed]. [Google Scholar]
  23. Jones S.W. (2011). Elucidating the transcriptional regulation of sporulation in Clostridium acetobutylicumPhD thesisNorthwestern University. [Google Scholar]
  24. Jones S.W., Paredes C.J., Tracy B., Cheng N., Sillers R., Senger R.S., Papoutsakis E.T. (2008). The transcriptional program underlying the physiology of clostridial sporulationGenome Biol 9R114 [View Article][PubMed]. [Google Scholar]
  25. Keijser B.J., Ter Beek A., Rauwerda H., Schuren F., Montijn R., van der Spek H., Brul S. (2007). Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowthJ Bacteriol 18936243634 [View Article][PubMed]. [Google Scholar]
  26. Lee K.S., Bumbaca D., Kosman J., Setlow P., Jedrzejas M.J. (2008). Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus speciesProc Natl Acad Sci U S A 10528062811 [View Article][PubMed]. [Google Scholar]
  27. Li J., McClane B.A. (2008). A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolatesPLoS Pathog 4e1000056 [View Article][PubMed]. [Google Scholar]
  28. Li J., Paredes-Sabja D., Sarker M.R., McClane B.A. (2009). Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expressionPLoS One 4e6249 [View Article][PubMed]. [Google Scholar]
  29. Lütke-Eversloh T., Bahl H. (2011). Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol productionCurr Opin Biotechnol 22634647 [View Article][PubMed]. [Google Scholar]
  30. Nölling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q., Gibson R., Lee H.M., Dubois J., Qiu D., other authors. (2001). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicumJ Bacteriol 18348234838 [View Article][PubMed]. [Google Scholar]
  31. Paredes C.J., Rigoutsos I., Papoutsakis E.T. (2004). Transcriptional organization of the Clostridium acetobutylicum genomeNucleic Acids Res 3219731981 [View Article][PubMed]. [Google Scholar]
  32. Pedersen L.B., Nessi C., Setlow P. (1997). Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus speciesJ Bacteriol 17918241827[PubMed]. [Google Scholar]
  33. Ponnuraj K., Rowland S., Nessi C., Setlow P., Jedrzejas M.J. (2000). Crystal structure of a novel germination protease from spores of Bacillus megaterium: structural arrangement and zymogen activationJ Mol Biol 300110 [View Article][PubMed]. [Google Scholar]
  34. Postemsky C.J., Dignam S.S., Setlow P. (1978). Isolation and characterization of Bacillus megaterium mutants containing decreased levels of spore proteaseJ Bacteriol 135841850[PubMed]. [Google Scholar]
  35. Qi Y., Grishin N.V. (2005). Structural classification of thioredoxin-like fold proteinsProteins 58376388 [View Article][PubMed]. [Google Scholar]
  36. Raju D., Waters M., Setlow P., Sarker M.R. (2006). Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heatBMC Microbiol 650 [View Article][PubMed]. [Google Scholar]
  37. Raju D., Setlow P., Sarker M.R. (2007). Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of Clostridium perfringens spores to moist heat and UV radiationAppl Environ Microbiol 7320482053 [View Article][PubMed]. [Google Scholar]
  38. Sambrook J., Russell D. (2001). Molecular Cloning: a Laboratory Manual3rd ednCold Spring Harbor, NYCold Spring Harbor Laboratory. [Google Scholar]
  39. Sanchez-Salas J.L., Setlow P. (1993). Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis sporesJ Bacteriol 17525682577[PubMed]. [Google Scholar]
  40. Sanchez-Salas J.L., Santiago-Lara M.L., Setlow B., Sussman M.D., Setlow P. (1992). Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germinationJ Bacteriol 174807814[PubMed]. [Google Scholar]
  41. Setlow P. (1975a). Identification and localization of the major proteins degraded during germination of Bacillus megaterium sporesJ Biol Chem 25081598167[PubMed]. [Google Scholar]
  42. Setlow P. (1975b). Purification and properties of some unique low molecular weight basic proteins degraded during germination of Bacillus megaterium sporesJ Biol Chem 25081688173[PubMed]. [Google Scholar]
  43. Setlow P. (1976). Purification and properties of a specific proteolytic enzyme present in spores of Bacillus megateriumJ Biol Chem 25178537862[PubMed]. [Google Scholar]
  44. Setlow P. (1978). Purification and characterization of additional low-molecular-weight basic proteins degraded during germination of Bacillus megaterium sporesJ Bacteriol 136331340[PubMed]. [Google Scholar]
  45. Setlow P. (1988). Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradationAnnu Rev Microbiol 42319338 [View Article][PubMed]. [Google Scholar]
  46. Setlow P. (2003). Spore germinationCurr Opin Microbiol 6550556 [View Article][PubMed]. [Google Scholar]
  47. Setlow P. (2007). I will survive: DNA protection in bacterial sporesTrends Microbiol 15172180 [View Article][PubMed]. [Google Scholar]
  48. Setlow B., Setlow P. (1995). Binding to DNA protects alpha/beta-type, small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as by other proteasesJ Bacteriol 17741494151[PubMed]. [Google Scholar]
  49. Setlow P., Gerard C., Ozols J. (1980). The amino acid sequence specificity of a protease from spores of Bacillus megateriumJ Biol Chem 25536243628[PubMed]. [Google Scholar]
  50. Setlow B., Sun D., Setlow P. (1992). Interaction between DNA and alpha/beta-type small, acid-soluble spore proteins: a new class of DNA-binding proteinJ Bacteriol 17423122322[PubMed]. [Google Scholar]
  51. Steil L., Serrano M., Henriques A.O., Völker U. (2005). Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilisMicrobiology 151399420 [View Article][PubMed]. [Google Scholar]
  52. Stragier P., Losick R. (1996). Molecular genetics of sporulation in Bacillus subtilisAnnu Rev Genet 30297341 [View Article][PubMed]. [Google Scholar]
  53. Sussman M.D., Setlow P. (1991). Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germinationJ Bacteriol 173291300[PubMed]. [Google Scholar]
  54. Tavares M.B., Souza R.D., Luiz W.B., Cavalcante R.C.M., Casaroli C., Martins E.G., Ferreira R.C., Ferreira L.C. (2013). Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification methodCurr Microbiol 66279285 [View Article][PubMed]. [Google Scholar]
  55. Tomas C.A., Alsaker K.V., Bonarius H.P., Hendriksen W.T., Yang H., Beamish J.A., Paredes C.J., Papoutsakis E.T. (2003). DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5J Bacteriol 18545394547 [View Article][PubMed]. [Google Scholar]
  56. Traag B.A., Pugliese A., Setlow B., Setlow P., Losick R. (2013). A conserved ClpP-like protease involved in spore outgrowth in Bacillus subtilisMol Microbiol 90160166 [View Article][PubMed]. [Google Scholar]
  57. Tracy B.P., Jones S.W., Papoutsakis E.T. (2011). Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesisJ Bacteriol 19314141426 [View Article][PubMed]. [Google Scholar]
  58. Voigt C., Bahl H., Fischer R.J. (2014). Identification of PTSFru as the major fructose uptake system of Clostridium acetobutylicumAppl Microbiol Biotechnol 9871617172 [View Article][PubMed]. [Google Scholar]
  59. Vyas J., Cox J., Setlow B., Coleman W.H., Setlow P. (2011). Extremely variable conservation of γ-type small, acid-soluble proteins from spores of some species in the bacterial order BacillalesJ Bacteriol 19318841892 [View Article][PubMed]. [Google Scholar]
  60. Wang S.T., Setlow B., Conlon E.M., Lyon J.L., Imamura D., Sato T., Setlow P., Losick R., Eichenberger P. (2006). The forespore line of gene expression in Bacillus subtilisJ Mol Biol 3581637 [View Article][PubMed]. [Google Scholar]
  61. Wietzke M., Bahl H. (2012). The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicumAppl Microbiol Biotechnol 96749761 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000162
Loading
/content/journal/micro/10.1099/mic.0.000162
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error