1887

Abstract

Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in SBW25 biofilm formation, architecture and dispersal, and to relate gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25Δ in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25Δ. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25Δ developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25Δ biofilms after 3 h and, importantly, carbon starvation strongly induced expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000191
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2289.html?itemId=/content/journal/micro/10.1099/mic.0.000191&mimeType=html&fmt=ahah

References

  1. Abalos A., Pinazo A., Infante M. R., Casals M., García F., Manresa A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastesLangmuir 1713671371 [View Article]. [Google Scholar]
  2. Alsohim A. S., Taylor T. B., Barrett G. A., Gallie J., Zhang X. X., Altamirano-Junqueira A. E., Johnson L. J., Rainey P. B., Jackson R. W. (2014). The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotionEnviron Microbiol 1622672281 [View Article][PubMed]. [Google Scholar]
  3. Andersen J. B., Koch B., Nielsen T. H., Sørensen D., Hansen M., Nybroe O., Christophersen C., Sørensen J., Molin S., Givskov M. (2003). Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum Microbiology 1493746 [View Article][PubMed]. [Google Scholar]
  4. Bak F., Bonnichsen L., Jørgensen N. O. G., Nicolaisen M. H., Nybroe O. (2015). The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortiumAppl Microbiol Biotechnol 9914751483 [View Article][PubMed]. [Google Scholar]
  5. Bao Y., Lies D. P., Fu H., Roberts G. P. (1991). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteriaGene 109167168 [View Article][PubMed]. [Google Scholar]
  6. Boles B. R., Thoendel M., Singh P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilmsMol Microbiol 5712101223 [View Article][PubMed]. [Google Scholar]
  7. Boyd C. D., O'Toole G. A. (2012). Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systemsAnnu Rev Cell Dev Biol 28439462 [View Article][PubMed]. [Google Scholar]
  8. Cárcamo-Oyarce G., Lumjiaktase P., Kümmerli R., Eberl L. (2015). Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilmsNat Commun 65945 [View Article][PubMed]. [Google Scholar]
  9. Crusz S. A., Popat R., Rybtke M. T., Cámara M., Givskov M., Tolker-Nielsen T., Diggle S. P., Williams P. (2012). Bursting the bubble on bacterial biofilms: a flow cell methodologyBiofouling 28835842 [View Article][PubMed]. [Google Scholar]
  10. D'aes J., Kieu N. P., Léclère V., Tokarski C., Olorunleke F. E., De Maeyer K., Jacques P., Höfte M., Ongena M. (2014). To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12aEnviron Microbiol 1622822300 [View Article][PubMed]. [Google Scholar]
  11. Davey M. E., Caiazza N. C., O'Toole G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1J Bacteriol 18510271036 [View Article][PubMed]. [Google Scholar]
  12. de Bruijn I., de Kock M. J. D., Yang M., de Waard P., van Beek T. A., Raaijmakers J. M. (2007). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas speciesMol Microbiol 63417428 [View Article][PubMed]. [Google Scholar]
  13. de Bruijn I., de Kock M. J. D., de Waard P., van Beek T. A., Raaijmakers J. M. (2008). Massetolide A biosynthesis in Pseudomonas fluorescens J Bacteriol 19027772789 [View Article][PubMed]. [Google Scholar]
  14. Déziel E., Lépine F., Milot S., Villemur R. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipidsMicrobiology 14920052013 [View Article][PubMed]. [Google Scholar]
  15. Fechtner J., Koza A., Sterpaio P. D., Hapca S. M., Spiers A. J. (2011). Surfactants expressed by soil pseudomonads alter local soil-water distribution, suggesting a hydrological role for these compoundsFEMS Microbiol Ecol 785058 [View Article][PubMed]. [Google Scholar]
  16. Gjermansen M., Nilsson M., Yang L., Tolker-Nielsen T. (2010). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanismsMol Microbiol 75815826 [View Article][PubMed]. [Google Scholar]
  17. Grant S. G., Jessee J., Bloom F. R., Hanahan D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutantsProc Natl Acad Sci U S A 8746454649 [View Article][PubMed]. [Google Scholar]
  18. Haba E., Pinazo A., Jauregui O., Espuny M. J., Infante M. R., Manresa A. (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044Biotechnol Bioeng 81316322 [View Article][PubMed]. [Google Scholar]
  19. Hall-Stoodley L., Costerton J. W., Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseasesNat Rev Microbiol 295108 [View Article][PubMed]. [Google Scholar]
  20. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S. (2000). Quantification of biofilm structures by the novel computer program COMSTATMicrobiology 14623952407 [View Article][PubMed]. [Google Scholar]
  21. Kassen R., Llewellyn M., Rainey P. B. (2004). Ecological constraints on diversification in a model adaptive radiationNature 431984988 [View Article][PubMed]. [Google Scholar]
  22. King E. O., Ward M. K., Raney D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescinJ Lab Clin Med 44301307[PubMed]. [Google Scholar]
  23. Koch B., Jensen L. E., Nybroe O. (2001). A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal siteJ Microbiol Methods 45187195 [View Article][PubMed]. [Google Scholar]
  24. Koza A., Hallett P. D., Moon C. D., Spiers A. J. (2009). Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25Microbiology 15513971406 [View Article][PubMed]. [Google Scholar]
  25. Kruijt M., Tran H., Raaijmakers J. M. (2009). Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267J Appl Microbiol 107546556 [View Article][PubMed]. [Google Scholar]
  26. Kuiper I., Lagendijk E. L., Pickford R., Derrick J. P., Lamers G. E. M., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilmsMol Microbiol 5197113 [View Article][PubMed]. [Google Scholar]
  27. Lequette Y., Greenberg E. P. (2005). Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilmsJ Bacteriol 1873744 [View Article][PubMed]. [Google Scholar]
  28. Li W., Rokni-Zadeh H., De Vleeschouwer M., Ghequire M. G. K., Sinnaeve D., Xie G.-L., Rozenski J., Madder A., Martins J. C., De Mot R. (2013). The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptidesPLoS One 8e62946[PubMed].[CrossRef] [Google Scholar]
  29. Mazzola M., de Bruijn I., Cohen M. F., Raaijmakers J. M. (2009). Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens Appl Environ Microbiol 7568046811 [View Article][PubMed]. [Google Scholar]
  30. O'Toole G. A., Kolter R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm developmentMol Microbiol 30295304 [View Article][PubMed]. [Google Scholar]
  31. Pamp S. J., Tolker-Nielsen T. (2007). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa J Bacteriol 18925312539 [View Article][PubMed]. [Google Scholar]
  32. Raaijmakers J. M., de Bruijn I., de Kock M. J. D. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulationMol Plant Microbe Interact 19699710 [View Article][PubMed]. [Google Scholar]
  33. Raaijmakers J. M., De Bruijn I., Nybroe O., Ongena M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibioticsFEMS Microbiol Rev 3410371062 [View Article][PubMed]. [Google Scholar]
  34. Rainey P. B., Bailey M. J. (1996). Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosomeMol Microbiol 19521533 [View Article][PubMed]. [Google Scholar]
  35. Rainey P. B., Rainey K. (2003). Evolution of cooperation and conflict in experimental bacterial populationsNature 4257274 [View Article][PubMed]. [Google Scholar]
  36. Roongsawang N., Hase K., Haruki M., Imanaka T., Morikawa M., Kanaya S. (2003). Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38Chem Biol 10869880 [View Article][PubMed]. [Google Scholar]
  37. Schooling S. R., Charaf U. K., Allison D. G., Gilbert P. (2004). A role for rhamnolipid in biofilm dispersionBiofilms 19199 [View Article]. [Google Scholar]
  38. Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A. D., Durante-Rodríguez G., Kim J., other authors. (2013). The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypesNucleic Acids Res 41(D1), D666D675 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000191
Loading
/content/journal/micro/10.1099/mic.0.000191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error