1887

Abstract

is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000193
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2298.html?itemId=/content/journal/micro/10.1099/mic.0.000193&mimeType=html&fmt=ahah

References

  1. Ahuja E. G., Janning P., Mentel M., Graebsch A., Breinbauer R., Hiller W., Costisella B., Thomashow L. S., Mavrodi D. V., Blankenfeldt W. (2008). PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesisJ Am Chem Soc 1301705317061 [View Article][PubMed]. [Google Scholar]
  2. Braud A., Hoegy F., Jezequel K., Lebeau T., Schalk I. J. (2009). New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathwayEnviron Microbiol 1110791091 [View Article][PubMed]. [Google Scholar]
  3. Brint J. M., Ohman D. E. (1995). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI familyJ Bacteriol 17771557163[PubMed]. [Google Scholar]
  4. Caminos D. A., Spesia M. B., Pons P., Durantini E. N. (2008). Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrinPhotochem Photobiol Sci 710711078 [View Article][PubMed]. [Google Scholar]
  5. Cheluvappa R. (2014). Standardized chemical synthesis of Pseudomonas aeruginosa pyocyaninMethodsX 16773 [View Article][PubMed]. [Google Scholar]
  6. Diggle S. P., Matthijs S., Wright V. J., Fletcher M. P., Chhabra S. R., Lamont I. L., Kong X., Hider R. C., Cornelis P., other authors. (2007). The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapmentChem Biol 148796 [View Article][PubMed]. [Google Scholar]
  7. du Bois R. M. (1985). The alveolar macrophageThorax 40321327 [View Article][PubMed]. [Google Scholar]
  8. Forbes B. A., Sahm D. F., Weissfeld A. S. (2007). Bailey and Scott's Diagnostic Microbiology12th edn.St. Louis, MOC. V. Mosby. [Google Scholar]
  9. Gaonkar T., Nayak P. K., Garg S., Bhosle S. (2012). Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolateScientificWorldJournal 2012857249 [View Article][PubMed]. [Google Scholar]
  10. Glaeser J., Klug G. (2005). Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genesMicrobiology 15119271938 [View Article][PubMed]. [Google Scholar]
  11. Griffiths M., Sistrom W. R., Cohen-Bazire G., Stanier R. Y. (1955). Function of carotenoids in photosynthesisNature 17612111214 [View Article][PubMed]. [Google Scholar]
  12. Hassett D. J., Charniga L., Bean K., Ohman D. E., Cohen M. S. (1992). Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutaseInfect Immun 60328336[PubMed]. [Google Scholar]
  13. Herrero M., de Lorenzo V., Timmis K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteriaJ Bacteriol 17265576567[PubMed]. [Google Scholar]
  14. Huang C. T., Shih P. C. (2000). Effects of quorum sensing signal molecules on the hydrogen peroxide resistance against planktonic Pseudomonas aeruginosaJ Microbiol Immunol Infect 33154158[PubMed]. [Google Scholar]
  15. Huang L., Xuan Y., Koide Y., Zhiyentayev T., Tanaka M., Hamblin M. R. (2012). Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteriaLasers Surg Med 44490499 [View Article][PubMed]. [Google Scholar]
  16. Hunter R. C., Newman D. K. (2010). A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosaJ Bacteriol 19259625971 [View Article][PubMed]. [Google Scholar]
  17. Jayaseelan S., Ramaswamy D., Dharmaraj S. (2014). Pyocyanin: production, applications, challenges and new insightsWorld J Microbiol Biotechnol 3011591168 [View Article][PubMed]. [Google Scholar]
  18. Jimenez P. N., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosaMicrobiol Mol Biol Rev 764665 [View Article][PubMed]. [Google Scholar]
  19. Kahn M., Kolter R., Thomas C., Figurski D., Meyer R., Remaut E., Helinski D. R. (1979). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2Methods Enzymol 68268280 [View Article][PubMed]. [Google Scholar]
  20. Kasimova K. R., Sadasivam M., Landi G., Sarna T., Hamblin M. R. (2014). Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ionPhotochem Photobiol Sci 1315411548 [View Article][PubMed]. [Google Scholar]
  21. Ketelboeter L. M., Potharla V. Y., Bardy S. L. (2014). NTBC treatment of the pyomelanogenic Pseudomonas aeruginosa clinical isolate PA1111 inhibits pigment production and increases sensitivity to oxidative stressCurr Microbiol 69343348 [View Article][PubMed]. [Google Scholar]
  22. King E. O., Ward M. K., Raney D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescinJ Lab Clin Med 44301307[PubMed]. [Google Scholar]
  23. Kulasekara H. D., Ventre I., Kulasekara B. R., Lazdunski A., Filloux A., Lory S. (2005). A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genesMol Microbiol 55368380 [View Article][PubMed]. [Google Scholar]
  24. Kurian N. K., Nair H. P., Bath S. G. (2014). Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (SagarSampada cruise # 305)Int J Curr Biotech 2611. [Google Scholar]
  25. Lau G. W., Hassett D. J., Ran H., Kong F. (2004). The role of pyocyanin in Pseudomonas aeruginosa infectionTrends Mol Med 10599606 [View Article][PubMed]. [Google Scholar]
  26. Lee J., Zhang L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosaProtein Cell 62641 [View Article][PubMed]. [Google Scholar]
  27. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1J Bacteriol 18364546465 [View Article][PubMed]. [Google Scholar]
  28. Mavrodi D. V., Parejko J. A., Mavrodi O. V., Kwak Y. S., Weller D. M., Blankenfeldt W., Thomashow L. S. (2013). Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas sppEnviron Microbiol 15675686 [View Article][PubMed]. [Google Scholar]
  29. Morita Y., Tomida J., Kawamura Y. (2014). Responses of Pseudomonas aeruginosa to antimicrobialsFront Microbiol 4422 [View Article][PubMed]. [Google Scholar]
  30. Nitzan Y., Kauffman M. (1999). Endogenous porphyrin production in bacteria by δ-aminolaevulinic acid and subsequent bacterial photoeradicationLasers Med Sci 14269277 [View Article]. [Google Scholar]
  31. O'Toole G. A., Kolter R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysisMol Microbiol 28449461 [View Article][PubMed]. [Google Scholar]
  32. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. (2000). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpFJ Bacteriol 18245334544 [View Article][PubMed]. [Google Scholar]
  33. Orlandi V. T., Caruso E., Banfi S., Barbieri P. (2012). Effect of organic matter on the in vitro photoeradication of Pseudomonas aeruginosa by means of a cationic tetraaryl-porphyrinPhotochem Photobiol 88557564 [View Article][PubMed]. [Google Scholar]
  34. Orlandi V. T., Rybtke M., Caruso E., Banfi S., Tolker-Nielsen T., Barbieri P. (2014). Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1Biofouling 30883891 [View Article][PubMed]. [Google Scholar]
  35. Philippova T. O., Galkin B. N., Zinchenko O. Y., Rusakova M. Y., Ivanitsa V. A., Zhilina Z. I., Vodzinskii S. V., Ishkov Y. V. (2003). The antimicrobial properties of new synthetic porphyrinsJ Porphyr Phthalocyanines 07755760 [View Article]. [Google Scholar]
  36. Rada B., Leto T. L. (2013). Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infectionsTrends Microbiol 217381 [View Article][PubMed]. [Google Scholar]
  37. Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylidès C., Havaux M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plantsProc Natl Acad Sci U S A 10955355540 [View Article][PubMed]. [Google Scholar]
  38. Reszka K. J., Denning G. M., Britigan B. E. (2006). Photosensitized oxidation and inactivation of pyocyanin, a virulence factor of Pseudomonas aeruginosaPhotochem Photobiol 82466473 [View Article][PubMed]. [Google Scholar]
  39. Rodríguez-Rojas A., Mena A., Martín S., Borrell N., Oliver A., Blázquez J. (2009). Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infectionMicrobiology 15510501057 [View Article][PubMed]. [Google Scholar]
  40. Stintzi A., Evans K., Meyer J. M., Poole K. (1998). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa lasR/lasI mutants exhibit reduced pyoverdine biosynthesisFEMS Microbiol Lett 166341345 [View Article][PubMed]. [Google Scholar]
  41. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J., other authors. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogenNature 406959964 [View Article][PubMed]. [Google Scholar]
  42. Tavares A., Dias S. R., Carvalho C. M., Faustino M. A., Tomé J. P., Neves M. G., Tomé A. C., Cavaleiro J. A., Cunha Â., other authors. (2011). Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrinsPhotochem Photobiol Sci 1016591669 [View Article][PubMed]. [Google Scholar]
  43. Tegos G. P., Anbe M., Yang C., Demidova T. N., Satti M., Mroz P., Janjua S., Gad F., Hamblin M. R. (2006). Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivationAntimicrob Agents Chemother 5014021410 [View Article][PubMed]. [Google Scholar]
  44. Vasanthabharathi V., Lakshminarayanan R., Jayalakshmi S. (2011). Melanin production from marine StreptomycesAfr J Biotechnol 101122411234. [Google Scholar]
  45. Visca P., Imperi F., Lamont I. L. (2007). Pyoverdine siderophores: from biogenesis to biosignificanceTrends Microbiol 152230 [View Article][PubMed]. [Google Scholar]
  46. Wainwright M. (1998). Photodynamic antimicrobial chemotherapy (PACT)J Antimicrob Chemother 421328 [View Article][PubMed]. [Google Scholar]
  47. Whiteley M., Lee K. M., Greenberg E. P. (1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosaProc Natl Acad Sci U S A 961390413909 [View Article][PubMed]. [Google Scholar]
  48. Ziegelhoffer E. C., Donohue T. J. (2009). Bacterial responses to photo-oxidative stressNat Rev Microbiol 7856863[PubMed]. [Google Scholar]
  49. Zughaier S. M., Ryley H. C., Jackson S. K. (1999). A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anionInfect Immun 67908913[PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000193
Loading
/content/journal/micro/10.1099/mic.0.000193
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error