1887

Abstract

Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1–6; T1SS–T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, and , have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS ‘autotransporters’, which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000197
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2328.html?itemId=/content/journal/micro/10.1099/mic.0.000197&mimeType=html&fmt=ahah

References

  1. Abby S. S., Rocha E. P. C. (2012). The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systemsPLoS Genet 8e1002983 [View Article][PubMed]. [Google Scholar]
  2. Ahuja U., Liu M., Tomida S., Park J., Souda P., Whitelegge J., Li H., Harvill E. T., Parkhill J., Miller J. F. (2012). Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica BMC Microbiol 12167 [View Article][PubMed]. [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search toolJ Mol Biol 215403410 [View Article][PubMed]. [Google Scholar]
  4. Bernstein H. D. (2007). Are bacterial ‘autotransporters’ really transporters?Trends Microbiol 15441447 [View Article][PubMed]. [Google Scholar]
  5. Bingle L. E., Bailey C. M., Pallen M. J. (2008). Type VI secretion: a beginner's guideCurr Opin Microbiol 1138 [View Article][PubMed]. [Google Scholar]
  6. Buboltz A. M., Nicholson T. L., Parette M. R., Hester S. E., Parkhill J., Harvill E. T. (2008). Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica J Bacteriol 19055025511 [View Article][PubMed]. [Google Scholar]
  7. Buboltz A. M., Nicholson T. L., Weyrich L. S., Harvill E. T. (2009). Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica Infect Immun 7739693977 [View Article][PubMed]. [Google Scholar]
  8. Cambronne E. D., Roy C. R. (2006). Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systemsTraffic 7929939 [View Article][PubMed]. [Google Scholar]
  9. Carver T. J., Rutherford K. M., Berriman M., Rajandream M.-A., Barrell B. G., Parkhill J. (2005). ACT: the Artemis Comparison ToolBioinformatics 2134223423 [View Article][PubMed]. [Google Scholar]
  10. Cascales E. (2008). The type VI secretion toolkitEMBO Rep 9735741 [View Article][PubMed]. [Google Scholar]
  11. CDC (2015a). Pertussis: outbreaks.http://www.cdc.gov/pertussis/outbreaks/trends.html.. [Google Scholar]
  12. CDC (2015b). Pertussis in Other Countries. http://www.cdc.gov/pertussis/countries.html.. [Google Scholar]
  13. Christie P. J., Cascales E. (2005). Structural and dynamic properties of bacterial type IV secretion systemsMol Membr Biol 225161 [View Article][PubMed]. [Google Scholar]
  14. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systemsAnnu Rev Microbiol 59451485 [View Article][PubMed]. [Google Scholar]
  15. Christie P. J., Whitaker N., González-Rivera C. (2014). Mechanism and structure of the bacterial type IV secretion systemsBiochim Biophys Acta 184315781591 [View Article][PubMed]. [Google Scholar]
  16. Cianciotto N. P. (2005). Type II secretion: a protein secretion system for all seasonsTrends Microbiol 13581588 [View Article][PubMed]. [Google Scholar]
  17. Cornelis G. R. (2006). The type III secretion injectisomeNat Rev Microbiol 4811825 [View Article][PubMed]. [Google Scholar]
  18. Costa T. R. D., Felisberto-Rodrigues C., Meir A., Prevost M. S., Redzej A., Trokter M., Waksman G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insightsNat Rev Microbiol 13343359 [View Article][PubMed]. [Google Scholar]
  19. Dautin N., Bernstein H. D. (2007). Protein secretion in gram-negative bacteria via the autotransporter pathwayAnnu Rev Microbiol 6189112 [View Article][PubMed]. [Google Scholar]
  20. Delepelaire P. (2004). Type I secretion in gram-negative bacteriaBiochim Biophys Acta 1694149161 [View Article][PubMed]. [Google Scholar]
  21. Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., Mooi F. R. (2005). Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica PLoS Pathog 1e45 [View Article][PubMed]. [Google Scholar]
  22. Diepold A., Wagner S. (2014). Assembly of the bacterial type III secretion machineryFEMS Microbiol Rev 38802822 [View Article][PubMed]. [Google Scholar]
  23. Fauvart M., Michiels J. (2008). Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosisFEMS Microbiol Lett 28519 [View Article][PubMed]. [Google Scholar]
  24. Fennelly N. K., Sisti F., Higgins S. C., Ross P. J., van der Heide H., Mooi F. R., Boyd A., Mills K. H. (2008). Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responsesInfection and Immunity 7612571266 [View Article][PubMed]. [Google Scholar]
  25. Filloux A. (2004). The underlying mechanisms of type II protein secretionBiochim Biophys Acta 1694163179 [View Article][PubMed]. [Google Scholar]
  26. Filloux A., Hachani A., Bleves S. (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranesMicrobiology 15415701583 [View Article][PubMed]. [Google Scholar]
  27. Fronzes R., Schäfer E., Wang L., Saibil H. R., Orlova E. V., Waksman G. (2009). Structure of a type IV secretion system core complexScience 323266268 [View Article][PubMed]. [Google Scholar]
  28. Gawarzewski I., Smits S. H. J., Schmitt L., Jose J. (2013). Structural comparison of the transport units of type V secretion systemsBiol Chem 39413851398 [View Article][PubMed]. [Google Scholar]
  29. Grant S. R., Fisher E. J., Chang J. H., Mole B. M., Dangl J. L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteriaAnnu Rev Microbiol 60425449 [View Article][PubMed]. [Google Scholar]
  30. Heininger U., Cotter P. A., Fescemyer H. W., Martinez de Tejada G., Yuk M. H., Miller J. F., Harvill E. T. (2002). Comparative phenotypic analysis of the Bordetella parapertussis isolate chosen for genomic sequencingInfect Immun 7037773784 [View Article][PubMed]. [Google Scholar]
  31. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D. (2004). Type V protein secretion pathway: the autotransporter storyMicrobiol Mol Biol Rev 68692744 [View Article][PubMed]. [Google Scholar]
  32. Holland I. B., Schmitt L., Young J. (2005). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathwayMol Membr Biol 222939 [View Article][PubMed]. [Google Scholar]
  33. Hood R. D., Singh P., Hsu F., Güvener T., Carl M. A., Trinidad R. R. S., Silverman J. M., Ohlson B. B., Hicks K. G., other authors. (2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteriaCell Host Microbe 72537 [View Article][PubMed]. [Google Scholar]
  34. Jacob-Dubuisson F., Fernandez R., Coutte L. (2004). Protein secretion through autotransporter and two-partner pathwaysBiochim Biophys Acta 1694235257 [View Article][PubMed]. [Google Scholar]
  35. Julio S. M., Cotter P. A. (2005). Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica Infect Immun 7349604971 [View Article][PubMed]. [Google Scholar]
  36. Korotkov K. V., Sandkvist M., Hol W. G. J. (2012). The type II secretion system: biogenesis, molecular architecture and mechanismNat Rev Microbiol 10336351[PubMed]. [Google Scholar]
  37. Laoide B. M., Ullmann A. (1990). Virulence dependent and independent regulation of the Bordetella pertussis cya operonEMBO J 99991005[PubMed]. [Google Scholar]
  38. Le Blastier S., Hamels A., Cabeen M., Schille L., Tilquin F., Dieu M., Raes M., Matroule J.-Y. (2010). Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus PLoS One 5e14198 [View Article][PubMed]. [Google Scholar]
  39. Leo J. C., Grin I., Linke D. (2012). Type V secretion: mechanism(s) of autotransport through the bacterial outer membranePhilos Trans R Soc Lond B Biol Sci 36710881101 [View Article][PubMed]. [Google Scholar]
  40. Locht C., Coutte L., Mielcarek N. (2011). The ins and outs of pertussis toxinFEBS J 27846684682 [View Article][PubMed]. [Google Scholar]
  41. Mahmoud K. K., Koval S. F. (2010). Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio Microbiology 15610401051 [View Article][PubMed]. [Google Scholar]
  42. Marr N., Oliver D. C., Laurent V., Poolman J., Denoël P., Fernandez R. C. (2008). Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization modelVaccine 2643064311 [View Article][PubMed]. [Google Scholar]
  43. Marshall N. C., Finlay B. B. (2014). Targeting the type III secretion system to treat bacterial infectionsExpert Opin Ther Targets 18137152[PubMed].[CrossRef] [Google Scholar]
  44. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. (2010). rdp3: a flexible and fast computer program for analyzing recombinationBioinformatics 2624622463 [View Article][PubMed]. [Google Scholar]
  45. Mattoo S., Cherry J. D. (2005). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspeciesClin Microbiol Rev 18326382 [View Article][PubMed]. [Google Scholar]
  46. Mota L. J., Journet L., Sorg I., Agrain C., Cornelis G. R. (2005). Bacterial injectisomes: needle length does matterScience 3071278 [View Article][PubMed]. [Google Scholar]
  47. Nicholson T. L. (2007). Construction and validation of a first-generation Bordetella bronchiseptica long-oligonucleotide microarray by transcriptional profiling the Bvg regulonBMC Genomics 8220 [View Article][PubMed]. [Google Scholar]
  48. Nivaskumar M., Francetic O. (2014). Type II secretion system: a magic beanstalk or a protein escalatorBiochim Biophys Acta 184315681577 [View Article][PubMed]. [Google Scholar]
  49. Noofeli M., Bokhari H., Blackburn P., Roberts M., Coote J. G., Parton R. (2011). BapC autotransporter protein is a virulence determinant of Bordetella pertussis Microb Pathog 51169177 [View Article][PubMed]. [Google Scholar]
  50. O'Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. (1999). A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis Mol Microbiol 3312101220 [View Article][PubMed]. [Google Scholar]
  51. Pantoja M., Chen L., Chen Y., Nester E. W. (2002). Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasmMol Microbiol 4513251335 [View Article][PubMed]. [Google Scholar]
  52. Park J., Zhang Y., Buboltz A. M., Zhang X., Schuster S. C., Ahuja U., Liu M., Miller J. F., Sebaihia M., other authors. (2012). Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogensBMC Genomics 13545 [View Article][PubMed]. [Google Scholar]
  53. Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., Holden M. T. G., Churcher C. M., Bentley S. D., other authors. (2003). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica Nat Genet 353240 [View Article][PubMed]. [Google Scholar]
  54. Peabody C. R., Chung Y. J., Yen M.-R., Vidal-Ingigliardi D., Pugsley A. P., Saier M. H. J. Jr (2003). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagellaMicrobiology 14930513072 [View Article][PubMed]. [Google Scholar]
  55. Pittman M. (1984). The concept of pertussis as a toxin-mediated diseasePediatr Infect Dis 3467486 [View Article][PubMed]. [Google Scholar]
  56. Pittman M. (1986). Neurotoxicity of Bordetella pertussis Neurotoxicology 75367[PubMed]. [Google Scholar]
  57. Pukatzki S., Ma A. T., Revel A. T., Sturtevant D., Mekalanos J. J. (2007). Type V secretion system translocates a phage tail spike-like protein into target cells where it cross-links actinProc Natl Acad Sci U S A 1041550815513 [View Article][PubMed]. [Google Scholar]
  58. Rambow-Larsen A. A., Weiss A. A. (2004). Temporal expression of pertussis toxin and Ptl secretion proteins by Bordetella persussis J Bacteriol 1864350.[CrossRef] [Google Scholar]
  59. R Development Core Team (2008). R: a Language and Environment for Statistical ComputingViennaR Foundation for Statistical Computing. [Google Scholar]
  60. Reddy J. D., Reddy S. L., Hopkins D. L., Gabriel D. W. (2007). TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevinesMol Plant Microbe Interact 20403410 [View Article][PubMed]. [Google Scholar]
  61. Russell A. B., Hood R. D., Bui N. K., LeRoux M., Vollmer W., Mougous J. D. (2011). Type VI secretion delivers bacteriolytic effectors to target cellsNature 475343347 [View Article][PubMed]. [Google Scholar]
  62. Saier M. H. Jr (2004). Evolution of bacterial type III protein secretion systemsTrends Microbiol 12113115 [View Article][PubMed]. [Google Scholar]
  63. Sandkvist M. (2001). Biology of type II secretionMol Microbiol 40271283 [View Article][PubMed]. [Google Scholar]
  64. Schwarz S., West T. E., Boyer F., Chiang W.-C., Carl M. A., Hood R. D., Rohmer L., Tolker-Nielsen T., Skerrett S. J., Mougous J. D. (2010). Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactionsPLoS Pathog 6e1001068 [View Article][PubMed]. [Google Scholar]
  65. Sebaihia M., Preston A., Maskell D. J., Kuzmiak H., Connell T. D., King N. D., Orndorff P. E., Miyamoto D. M., Thomson N. R., other authors. (2006). Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis and B. parapertussis reveals extensive diversity in surface structures associated with host interactionJ Bacteriol 18860026015 [View Article][PubMed]. [Google Scholar]
  66. Seeger M. A., Schiefner A., Eicher T., Verrey F., Diederichs K., Pos K. M. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanismScience 31312951298 [View Article][PubMed]. [Google Scholar]
  67. Shrivastava S., Mande S. S. (2008). Identification and functional characterization of gene components of type VI secretion system in bacterial genomesPLoS One 3e2955 [View Article][PubMed]. [Google Scholar]
  68. Shrivastava R., Miller J. F. (2009). Virulence factor secretion and translocation by Bordetella speciesCurr Opin Microbiol 128893 [View Article][PubMed]. [Google Scholar]
  69. Snel B., Lehmann G., Bork P., Huynen M. A. (2000). string: a web-server to retrieve and display the repeatedly occurring neighbourhood of a geneNucleic Acids Res 2834423444 [View Article][PubMed]. [Google Scholar]
  70. Stone C. B., Bulir D. C., Gilchrist J. D., Toor R. K., Mahony J. B. (2010). Interactions between flagellar and type III secretion proteins in Chlamydia pneumoniae BMC Microbiol 1018 [View Article][PubMed]. [Google Scholar]
  71. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methodsMol Biol Evol 2827312739 [View Article][PubMed]. [Google Scholar]
  72. Thanassi D. G., Hultgren S. J. (2000). Multiple pathways allow protein secretion across the bacterial outer membraneCurr Opin Cell Biol 12420430 [View Article][PubMed]. [Google Scholar]
  73. Thomas S., Holland I. B., Schmitt L. (2014). The type 1 secretion pathway — the hemolysin system and beyondBiochim Biophys Acta 184316291641 [View Article][PubMed]. [Google Scholar]
  74. Tseng T.-T., Tyler B. M., Setubal J. C. (2009). Protein secretion systems in bacterial–host associations, and their description in the gene ontologyBMC Microbiol 9 (Suppl 1., S2 [View Article][PubMed]. [Google Scholar]
  75. Vernikos G. S., Parkhill J. (2006). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islandsBioinformatics 2221962203 [View Article][PubMed]. [Google Scholar]
  76. Wang Y., Chen Z., Qiao F., Ying T., Yuan J., Zhong Z., Zhou L., Du X., Wang Z., other authors. (2009). Comparative proteomics analyses reveal the virB of B. melitensis affects expression of intracellular survival related proteinsPLoS One 4e5368 [View Article][PubMed]. [Google Scholar]
  77. Weiss A. A., Johnson F. D., Burns D. L. (1993). Molecular characterization of an operon required for pertussis toxin secretionProc Natl Acad Sci U S A 9029702974 [View Article][PubMed]. [Google Scholar]
  78. Weyrich L. S., Rolin O. Y., Muse S. J., Park J., Spidale N., Kennett M. J., Hester S. E., Chen C., Dudley E. G., Harvill E. T. (2012). A type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo PLoS One 7e45892 [View Article][PubMed]. [Google Scholar]
  79. Wu H.-Y., Chung P.-C., Shih H.-W., Wen S.-R., Lai E.-M. (2008). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens J Bacteriol 19028412850 [View Article][PubMed]. [Google Scholar]
  80. Zhang H., Zhang H., Gao Z.-Q., Wang W.-J., Liu G.-F., Xu J.-H., Su X.-D., Dong Y.-H. (2013). Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity proteinJ Biol Chem 28859285939 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000197
Loading
/content/journal/micro/10.1099/mic.0.000197
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error