1887

Abstract

Whole genome sequencing of the response of W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in , increased expression of a unique transcriptional unit carrying the , and three other hypothetical genes (, and ) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential − 10 region at − 3 nt and a − 35 region at − 39 nt. Isogenic mutants FLL273 (PG1777 : : -) and FLL293 (PG1779 : : -) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO and Fe(NH)(SO).6HO. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the transcriptional unit may play an important role in oxidative stress resistance in via its ability to protect against DNA damage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000213
2016-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/256.html?itemId=/content/journal/micro/10.1099/mic.0.000213&mimeType=html&fmt=ahah

References

  1. Almeida M. S., Herrmann T., Peti W., Wilson I. A., Wüthrich K. 2005; NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins. Protein Sci 14:2880–2886 [View Article][PubMed]
    [Google Scholar]
  2. Bandyopadhyay S., Chandramouli K., Johnson M. K. 2008; Iron–sulfur cluster biosynthesis. Biochem Soc Trans 36:1112–1119 [View Article][PubMed]
    [Google Scholar]
  3. Barras F., Loiseau L., Py B. 2005; How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 50:41–101 [View Article][PubMed]
    [Google Scholar]
  4. Blanc B., Clémancey M., Latour J. M., Fontecave M., Ollagnier de Choudens S. 2014; Molecular investigation of iron-sulfur cluster assembly scaffolds under stress. Biochemistry 53:7867–7869 [View Article][PubMed]
    [Google Scholar]
  5. Chen K. E., Richards A. A., Ariffin J. K., Ross I. L., Sweet M. J., Kellie S., Kobe B., Martin J. L. 2012; The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. Acta Crystallogr D Biol Crystallogr 68:637–648 [View Article][PubMed]
    [Google Scholar]
  6. Chomczynski P. 1992; One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem 201:134–139 [View Article][PubMed]
    [Google Scholar]
  7. Chung M. C. 1985; A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem 148:498–502 [View Article][PubMed]
    [Google Scholar]
  8. Djaman O., Outten F. W., Imlay J. A. 2004; Repair of oxidized iron-sulfur clusters in Escherichia coli . J Biol Chem 279:44590–44599 [View Article][PubMed]
    [Google Scholar]
  9. Genevaux P., Georgopoulos C., Kelley W. L. 2007; The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857 [View Article][PubMed]
    [Google Scholar]
  10. Gralnick J. A., Downs D. M. 2003; The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 278:20708–20715 [View Article][PubMed]
    [Google Scholar]
  11. Henry L. G., McKenzie R. M., Robles A., Fletcher H. M. 2012; Oxidative stress resistance in Porphyromonas gingivalis . Future Microbiol 7:497–512 [View Article][PubMed]
    [Google Scholar]
  12. Imlay J. A. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153 [View Article][PubMed]
    [Google Scholar]
  13. Jackson C. A., Hoffmann B., Slakeski N., Cleal S., Hendtlass A. J., Reynolds E. C. 2000; A consensus Porphyromonas gingivalis promoter sequence. FEMS Microbiol Lett 186:133–138 [View Article][PubMed]
    [Google Scholar]
  14. Jang S., Imlay J. A. 2010; Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448–1467 [View Article][PubMed]
    [Google Scholar]
  15. Johnson N. A., Liu Y., Fletcher H. M. 2004; Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol 19:233–239 [View Article][PubMed]
    [Google Scholar]
  16. Johnson N. A., McKenzie R. M., Fletcher H. M. 2011; The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol Oral Microbiol 26:62–77 [View Article][PubMed]
    [Google Scholar]
  17. Keyer K., Gort A. S., Imlay J. A. 1995; Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790[PubMed]
    [Google Scholar]
  18. Klein B. A., Tenorio E. L., Lazinski D. W., Camilli A., Duncan M. J., Hu L. T. 2012; Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis . BMC Genomics 13:578 [View Article][PubMed]
    [Google Scholar]
  19. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev 62:1244–1263[PubMed]
    [Google Scholar]
  20. Lantz M. S. 1996; New insights into mechanisms of bacterial pathogenesis in periodontitis. Curr Opin Periodontol 3:10–18[PubMed]
    [Google Scholar]
  21. Loiseau L., Ollagnier-de Choudens S., Lascoux D., Forest E., Fontecave M., Barras F. 2005; Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli . J Biol Chem 280:26760–26769 [View Article][PubMed]
    [Google Scholar]
  22. Lund P. A. 2001; Microbial molecular chaperones. Adv Microb Physiol 44:93–140 [View Article][PubMed]
    [Google Scholar]
  23. Luo D., Bernard D. G., Balk J., Hai H., Cui X. 2012; The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis . Plant Cell 24:4135–4148 [View Article][PubMed]
    [Google Scholar]
  24. McKenzie R. M., Johnson N. A., Aruni W., Dou Y., Masinde G., Fletcher H. M. 2012; Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress. Microbiology 158:2465–2479 [View Article][PubMed]
    [Google Scholar]
  25. Meuric V., Gracieux P., Tamanai-Shacoori Z., Perez-Chaparro J., Bonnaure-Mallet M. 2008; Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis . Oral Microbiol Immunol 23:308–314 [View Article][PubMed]
    [Google Scholar]
  26. Robles A. G., Reid K., Roy F., Fletcher H. M. 2011; Porphyromonas gingivalis mutY is involved in the repair of oxidative stress-induced DNA mispairing. Mol Oral Microbiol 26:175–186 [View Article][PubMed]
    [Google Scholar]
  27. Roche B., Aussel L., Ezraty B., Mandin P., Py B., Barras F. 2013; Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827:455–469 [View Article][PubMed]
    [Google Scholar]
  28. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Schröder H., Langer T., Hartl F. U., Bukau B. 1993; DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144[PubMed]
    [Google Scholar]
  30. Seymour G. J., Gemmell E., Reinhardt R. A., Eastcott J., Taubman M. A. 1993; Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res 28:478–486 [View Article][PubMed]
    [Google Scholar]
  31. Smalley J. W., Silver J., Marsh P. J., Birss A. J. 1998; The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 331:681–685 [View Article][PubMed]
    [Google Scholar]
  32. Smalley J. W., Birss A. J., Silver J. 2000; The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the μ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 183:159–164[PubMed]
    [Google Scholar]
  33. Storz G., Imlay J. A. 1999; Oxidative stress. Curr Opin Microbiol 2:188–194 [View Article][PubMed]
    [Google Scholar]
  34. Touati D. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6 [View Article][PubMed]
    [Google Scholar]
  35. Tsou C. C., Chiang-Ni C., Lin Y. S., Chuang W. J., Lin M. T., Liu C. C., Wu J. J. 2008; An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 76:4038–4045 [View Article][PubMed]
    [Google Scholar]
  36. Vanterpool E., Roy F., Fletcher H. M. 2004; The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun 72:5555–5564 [View Article][PubMed]
    [Google Scholar]
  37. Yuan L., Rodrigues P. H., Bélanger M., Dunn W. Jr, Progulske-Fox A. 2007; The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo . FEMS Immunol Med Microbiol 51:388–398 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000213
Loading
/content/journal/micro/10.1099/mic.0.000213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error