1887

Abstract

Arasin 1 from the spider crab is a proline-rich antimicrobial peptide (PR-AMP), which kills target bacteria by a non-membranolytic mechanism. By using a fluorescent derivative of the peptide, we showed that arasin 1 rapidly penetrates into cells without membrane damage. To unravel its mode of action, a knockout gene library of was screened and two types of mutants with a less susceptible phenotype to the arasin 1 fragment (1–23) were found. The first bore the mutation of , a gene coding for an inner membrane protein involved in the uptake of different antibiotic peptides. The second mutation was located in the gene, coding for a conserved inner membrane protein of unknown function. Functional studies showed that YgdD is required for the full susceptibility to arasin 1(1–25), possibly by supporting its uptake and/or intracellular action. These results indicated that different bacterial proteins are exploited by arasin 1(1–25) to exert its antibacterial activity and add new insights on the complex mode of action of PR-AMPs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000249
2016-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/601.html?itemId=/content/journal/micro/10.1099/mic.0.000249&mimeType=html&fmt=ahah

References

  1. Agerberth B., Lee J. Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. 1991; Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854 [View Article][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008 [View Article][PubMed]
    [Google Scholar]
  3. Benincasa M., Scocchi M., Podda E., Skerlavaj B., Dolzani L., Gennaro R. 2004; Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061 [View Article][PubMed]
    [Google Scholar]
  4. Bessalle R., Kapitkovsky A., Gorea A., Shalit I., Fridkin M. 1990; All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155 [View Article][PubMed]
    [Google Scholar]
  5. Boman H. G., Agerberth B., Boman A. 1993; Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984[PubMed]
    [Google Scholar]
  6. Brogden K. A. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 3:238–250 [View Article][PubMed]
    [Google Scholar]
  7. Bulet P., Urge L., Ohresser S., Hetru C., Otvos L., Jr. 1996; Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila . Eur J Biochem 238:64–69 [View Article][PubMed]
    [Google Scholar]
  8. Casteels P., Tempst P. 1994; Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun 199:339–345 [View Article][PubMed]
    [Google Scholar]
  9. Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. 1989; Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391[PubMed]
    [Google Scholar]
  10. Chang C. I., Zhang Y. A., Zou J., Nie P., Secombes C. J. 2006; Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and atlantic salmon (Salmo salar). Antimicrob Agents Chemother 50:185–195 [View Article][PubMed]
    [Google Scholar]
  11. Cociancich S., Dupont A., Hegy G., Lanot R., Holder F., Hetru C., Hoffmann J. A., Bulet P. 1994; Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus . Biochem J 300:567–575 [View Article][PubMed]
    [Google Scholar]
  12. Daley D. O., Rapp M., Granseth E., Melén K., Drew D., von Heijne G. 2005; Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323 [View Article][PubMed]
    [Google Scholar]
  13. Destoumieux D., Bulet P., Loew D., Van Dorsselaer A., Rodriguez J., Bachère E. 1997; Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406 [View Article][PubMed]
    [Google Scholar]
  14. Domenech P., Kobayashi H., LeVier K., Walker G. C., Barry C. E. III 2009; BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis . J Bacteriol 191:477–485 [View Article][PubMed]
    [Google Scholar]
  15. Gennaro R., Skerlavaj B., Romeo D. 1989; Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146[PubMed]
    [Google Scholar]
  16. Gennaro R., Zanetti M., Benincasa M., Podda E., Miani M. 2002; Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778 [View Article][PubMed]
    [Google Scholar]
  17. Ghosal A., Vitali A., Stach J. E., Nielsen P. E. 2012; Role of SbmA in the uptake of peptide nucleic acid (PNA)–peptide conjugates in E. coli . ACS Chem Biol 8:360–367[PubMed] [CrossRef]
    [Google Scholar]
  18. Glazebrook J., Ichige A., Walker G. C. 1993; Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497 [View Article][PubMed]
    [Google Scholar]
  19. Hale J. D., Hancock R. E. 2007; Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959 [View Article][PubMed]
    [Google Scholar]
  20. Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L., Jr. 2001; The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026 [View Article][PubMed]
    [Google Scholar]
  21. Krizsan A., Volke D., Weinert S., Sträter N., Knappe D., Hoffmann R. 2014; Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew Chem Int Ed Engl 53:12236–12239 [View Article][PubMed]
    [Google Scholar]
  22. LeVier K., Walker G. C. 2001; Genetic analysis of the Sinorhizobium meliloti BacA protein: differential effects of mutations on phenotypes. J Bacteriol 183:6444–6453 [View Article][PubMed]
    [Google Scholar]
  23. LeVier K., Phillips R. W., Grippe V. K., Roop R.M., II, Walker G. C. 2000; Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493 [View Article][PubMed]
    [Google Scholar]
  24. Mardirossian M., Grzela R., Giglione C., Meinnel T., Gennaro R., Mergaert P., Scocchi M. 2014; The host antimicrobial peptide Bac71–35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639–1647 [View Article][PubMed]
    [Google Scholar]
  25. Mattiuzzo M., Bandiera A., Gennaro R., Benincasa M., Pacor S., Antcheva N., Scocchi M. 2007; Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151–163 [View Article][PubMed]
    [Google Scholar]
  26. Otvos L. Jr 2000; Antibacterial peptides isolated from insects. J Pept Sci 6:497–511 [View Article][PubMed]
    [Google Scholar]
  27. Otvos L. Jr 2002; The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150 [View Article][PubMed]
    [Google Scholar]
  28. Otvos L. Jr., O I., Rogers M. E., Consolvo P. J., Condie B. A., Lovas S., Bulet P., Blaszczyk-Thurin M. 2000; Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–14159 [View Article][PubMed]
    [Google Scholar]
  29. Ovchinnikov S., Kinch L., Park H., Liao Y., Pei J., Kim D. E., Kamisetty H., Grishin N. V., Baker D. 2015; Large-scale determination of previously unsolved protein structures using evolutionary information. eLife 4:e09248 [View Article][PubMed]
    [Google Scholar]
  30. Paulsen V. S., Blencke H. M., Benincasa M., Haug T., Eksteen J. J., Styrvold O. B., Scocchi M., Stensvåg K. 2013; Structure-activity relationships of the antimicrobial peptide arasin 1 – and mode of action studies of the N-terminal, proline-rich region. PLoS One 8:e53326 [View Article][PubMed]
    [Google Scholar]
  31. Podda E., Benincasa M., Pacor S., Micali F., Mattiuzzo M., Gennaro R., Scocchi M. 2006; Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740 [View Article][PubMed]
    [Google Scholar]
  32. Pränting M., Negrea A., Rhen M., Andersson D. I. 2008; Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemothe 52:2734–2741 [View Article][PubMed]
    [Google Scholar]
  33. Roy R. N., Lomakin I. B., Gagnon M. G., Steitz T. A. 2015; The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat Struct Mol Biol 22:466–469 [View Article][PubMed]
    [Google Scholar]
  34. Scocchi M., Luthy C., Decarli P., Mignogna G., Christen P., Gennaro R. 2009; The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK. Int J Pept Res Ther 15:147–155 [View Article]
    [Google Scholar]
  35. Scocchi M., Tossi A., Gennaro R. 2011; Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 68:2317–2330 [View Article][PubMed]
    [Google Scholar]
  36. Seefeldt A. C., Nguyen F., Antunes S., Pérébaskine N., Graf M., Arenz S., Inampudi K. K., Douat C., Guichard G., other authors. 2015; The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat Struct Mol Biol 22:470–475 [View Article][PubMed]
    [Google Scholar]
  37. Shai Y. 1999; Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70 [View Article][PubMed]
    [Google Scholar]
  38. Shi J., Ross C. R., Chengappa M. M., Blecha F. 1994; Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J Leukoc Biol 56:807–811[PubMed]
    [Google Scholar]
  39. Shi J., Ross C. R., Chengappa M. M., Sylte M. J., McVey D. S., Blecha F. 1996; Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide. Antimicrob Agents Chemother 40:115–121[PubMed]
    [Google Scholar]
  40. Stensvåg K., Haug T., Sperstad S. V., Rekdal O., Indrevoll B., Styrvold O. B. 2008; Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus . Dev Comp Immunol 32:275–285 [View Article][PubMed]
    [Google Scholar]
  41. Subbalakshmi C., Sitaram N. 1998; Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96 [View Article][PubMed]
    [Google Scholar]
  42. Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. 1990; All-d amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A 87:4761–4765 [View Article][PubMed]
    [Google Scholar]
  43. Wehmeier S., Arnold M. F., Marlow V. L., Aouida M., Myka K. K., Fletcher V., Benincasa M., Scocchi M., Ramotar D., Ferguson G. P. 2010; Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms. Microbiology 156:2702–2713 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000249
Loading
/content/journal/micro/10.1099/mic.0.000249
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error