1887

Abstract

In , uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene () reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double /-deletant strains are unable to produce new biomass from lactose. Although transcription of both genes was strongly induced by lactose, their inducer profiles differ markedly. but not expression was high in -galactose cultures. However, responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any response. Nevertheless, transcript was induced to higher levels on cellobiose in strains that lack the gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in deletants. In contrast, in knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in prominently involves hitherto unknown transport systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000267
2016-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/837.html?itemId=/content/journal/micro/10.1099/mic.0.000267&mimeType=html&fmt=ahah

References

  1. Aghcheh R. K., Kubicek C. P. 2015; Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol 99:6167–6181 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Anisimova M., Gascuel O. 2006; Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552 [View Article][PubMed]
    [Google Scholar]
  4. Baruffini E., Goffrini P., Donnini C., Lodi T. 2006; Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:1235–1242 [View Article][PubMed]
    [Google Scholar]
  5. Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. 2013; Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels 6:127 [View Article][PubMed]
    [Google Scholar]
  6. Cardinali G., Vollenbroich V., Jeon M. S., de Graaf A. A., Hollenberg C. P. 1997; Constitutive expression in gal7 mutants of Kluyveromyces lactis is due to internal production of galactose as an inducer of the Gal/Lac regulon. Mol Cell Biol 17:1722–1730 [View Article][PubMed]
    [Google Scholar]
  7. Cerqueira G. C., Arnaud M. B., Inglis D. O., Skrzypek M. S., Binkley G., Simison M., Miyasato S. R., Binkley J., Orvis J., other authors. 2014; The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710 [View Article][PubMed]
    [Google Scholar]
  8. Chang Y.-D., Dickson R. C. 1988; Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis. Presence of an unusual transcript structure. J Biol Chem 263:16696–16703[PubMed]
    [Google Scholar]
  9. Clutterbuck A. J. 1974; Aspergillus nidulans. In Handbook of Genetics, Bacteria, Bacteriophages, and Fungi vol. 1 pp 447–510 Edited by King R. C. New York: Plenum; [View Article]
    [Google Scholar]
  10. Coghill R. D., Moyer A. J. 1947; Method for production of increased yields of penicillin. US Patent 2,423,873
    [Google Scholar]
  11. Criscuolo A., Gribaldo S. 2010; BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210 [View Article][PubMed]
    [Google Scholar]
  12. Diniz R. H. S., Silveira W. B., Fietto L. G., Passos F. M. L. 2012; The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek 101:541–550 [View Article][PubMed]
    [Google Scholar]
  13. Fekete E., Karaffa L., Sándor E., Seiboth B., Biró S., Szentirmai A., Kubicek C. P. 2002; Regulation of formation of the intracellular β-galactosidase activity of Aspergillus nidulans . Arch Microbiol 179:7–14 [View Article][PubMed]
    [Google Scholar]
  14. Fekete E., Karaffa L., Seiboth B., Fekete É., Kubicek C. P., Flipphi M. 2012; Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans . Fungal Genet Biol 49:415–425 [View Article][PubMed]
    [Google Scholar]
  15. Galazka J. M., Tian C., Beeson W. T., Martinez B., Glass N. L., Cate J. H. 2010; Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86 [View Article][PubMed]
    [Google Scholar]
  16. Gänzle M. G., Haase G., Jelen P. 2008; Lactose: crystallization, hydrolysis and value-added derivatives. Int Dairy J 18:685–694 [View Article]
    [Google Scholar]
  17. Gielkens M. M., Dekkers E., Visser J., de Graaff L. H. 1999; Two cellobiohydrolase-encoding genes from Aspergillus niger require d-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 65:4340–4345[PubMed]
    [Google Scholar]
  18. Gödecke A., Zachariae W., Arvanitidis A., Breunig K. D. 1991; Coregulation of the Kluyveromyces lactis lactose permease and β-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res 19:5351–5358 [View Article][PubMed]
    [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  20. Ivanova C., Bååth J. A., Seiboth B., Kubicek C. P. 2013; Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 8:e62631 [View Article][PubMed]
    [Google Scholar]
  21. Jónás Á., Fekete E., Flipphi M., Sándor E., Jäger S., Molnár Á.P., Szentirmai A., Karaffa L. 2014; Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes. J Antibiot (Tokyo) 67:489–497 [View Article][PubMed]
    [Google Scholar]
  22. Karaffa L., Coulier L., Fekete E., Overkamp K. M., Druzhinina I. S., Mikus M., Seiboth B., Novák L., Punt P. J., Kubicek C. P. 2013; The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Appl Microbiol Biotechnol 97:5447–5456 [View Article][PubMed]
    [Google Scholar]
  23. Karaffa L., Díaz R., Papp B., Fekete E., Sándor E., Kubicek C. P. 2015; A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus . Appl Microbiol Biotechnol 99:7937–7944 [View Article][PubMed]
    [Google Scholar]
  24. Katoh K., Toh H. 2010; Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900 [View Article][PubMed]
    [Google Scholar]
  25. Kumari S., Panesar P. S., Panesar R. 2011; Production of β-galactosidase using novel yeast isolate from whey. Int J Dairy Sci 6:150–157 [View Article]
    [Google Scholar]
  26. Lodi T., Donnini C. 2005; Lactose-induced cell death of β-galactosidase mutants in Kluyveromyces lactis . FEMS Yeast Res 5:727–734 [View Article][PubMed]
    [Google Scholar]
  27. Marwaha S. S., Kennedy J. F. 1988; Whey – pollution problem and potential utilization. Int J Food Sci Technol 23:323–336 [View Article]
    [Google Scholar]
  28. Michalak M., Thomassen l. V., Roytio H., Ouwehand A. C., Meyer A. S., Mikkelsen J. D. 2012; Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme Microb Technol 50:121–129 [CrossRef]
    [Google Scholar]
  29. Mustapha A., Jiang T., Savaiano D. A. 1997; Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus . J Dairy Sci 80:1537–1545 [View Article][PubMed]
    [Google Scholar]
  30. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R. 2006; A versatile and efficient gene-targeting system for Aspergillus nidulans . Genetics 172:1557–1566 [View Article][PubMed]
    [Google Scholar]
  31. Nevalainen K. M. H. 1981; Induction, isolation, and characterization of Aspergillus niger mutant strains producing elevated levels of β-galactosidase. Appl Environ Microbiol 41:593–596[PubMed]
    [Google Scholar]
  32. O'Connell S., Walsh G. 2010; A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Appl Microbiol Biotechnol 86:517–524 [View Article][PubMed]
    [Google Scholar]
  33. Otten H., Michalak M., Mikkelsen J. D., Larsen S. 2013; The binding of zinc ions to Emericella nidulans endo-β-1,4-galactanase is essential for crystal formation. Acta Cryst F69:850–854
    [Google Scholar]
  34. Panesar P. S., Kennedy J. F. 2012; Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol 32:327–348 [View Article][PubMed]
    [Google Scholar]
  35. Panesar P. S., Panesar R., Singh R. S., Kennedy J. F., Kumar H. 2006; Microbial production, immobilization and applications of β-d-galactosidase. J Chem Technol Biotechnol 81:530–543 [View Article]
    [Google Scholar]
  36. Rigamonte T. A., Silveira W. B., Fietto L. G., Castro I. M., Breunig K. D., Passos F. M. L. 2011; Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Res 11:243–251 [View Article][PubMed]
    [Google Scholar]
  37. Riley M. I., Sreekrishna K., Bhairi S., Dickson R. C. 1987; Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol Gen Genet 208:145–151 [View Article][PubMed]
    [Google Scholar]
  38. Roelfsema W. A., Kuster B. F. M., Heslinga M. C., Pluim H., Verhage M. 2010 Lactose and Derivatives. Ullmann's Encyclopedia of Industrial Chemistry, 7th edn. New York: Wiley;
    [Google Scholar]
  39. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Seiboth B., Pakdaman B. S., Hartl L., Kubicek C. P. 2007; Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol Rev 21:42–48 [View Article]
    [Google Scholar]
  41. Silva M. F., Fornari R. C. G., Mazutti M. A., de Oliveira D., Padilha F. F., Cichoski A. J., Cansian R. L., Di Luccio M., Treichel H. 2009; Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90:119–123 [View Article]
    [Google Scholar]
  42. Sternberg D., Mandels G. R. 1980; Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of β-glucosidase. J Bacteriol 144:1197–1199[PubMed]
    [Google Scholar]
  43. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W. 1983; Transformation by integration in Aspergillus nidulans . Gene 26:205–221 [View Article][PubMed]
    [Google Scholar]
  44. Wortman J. R., Gilsenan J. M., Joardar V., Deegan J., Clutterbuck J., Andersen M. R., Archer D., Bencina M., Braus G., other authors. 2009; The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol 46:(Suppl. 1)S2–S13 [View Article][PubMed]
    [Google Scholar]
  45. Wucherpfennig T., Hestler T., Krull R. 2011; Morphology engineering–osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact 10:58 [View Article][PubMed]
    [Google Scholar]
  46. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C. 2004; Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981 [View Article][PubMed]
    [Google Scholar]
  47. Zhang W., Kou Y., Xu J., Cao Y., Zhao G., Shao J., Wang H., Wang Z., Bao X., other authors. 2013; Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem 288:32861–32872 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000267
Loading
/content/journal/micro/10.1099/mic.0.000267
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error