1887

Abstract

YbaO is an uncharacterized AsnC-family transcription factor of . In both and , YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the operon, located far from the gene on the genome, as a single regulatory target of YbaO. In both gel shift assay and reporter and Northern blot assays , YbaO was found to regulate the promoter. The growth of mutants lacking either or its targets was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type , but its production was not observed in each of the and mutants. The promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the operon, which is involved in the detoxification of cysteine. We then propose the naming of as (regulator of detoxification of cysteine).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000337
2016-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1698.html?itemId=/content/journal/micro/10.1099/mic.0.000337&mimeType=html&fmt=ahah

References

  1. Awano N., Wada M., Mori H., Nakamori S., Takagi H. 2005; Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152 [View Article][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.008 [View Article][PubMed]
    [Google Scholar]
  3. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645 [View Article]
    [Google Scholar]
  4. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res 42:D222–D230 [View Article][PubMed]
    [Google Scholar]
  5. Guarneros G., Ortega M. V. 1970; Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta 198:132–142 [View Article][PubMed]
    [Google Scholar]
  6. Hatahet F., Boyd D., Beckwith J. 2014; Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta 1844:1402–1414 [View Article][PubMed]
    [Google Scholar]
  7. Hennicke F., Grumbt M., Lermann U., Ueberschaar N., Palige K., Böttcher B., Jacobsen I. D., Staib C., Morschhäuser J. et al. 2013; Factors supporting cysteine tolerance and sulfite production in Candida albicans. Eukaryot Cell 12:604–613 [View Article][PubMed]
    [Google Scholar]
  8. Ishihama A. 2010; Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34:628–645 [View Article][PubMed]
    [Google Scholar]
  9. Ishihama A. 2012; Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad Ser B Phys Biol Sci 88:485–508 [View Article][PubMed]
    [Google Scholar]
  10. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N. 2014; Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 196:2718–2727 [View Article][PubMed]
    [Google Scholar]
  11. Ishihama A., Shimada T., Yamazaki Y. 2016; Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res 44:2058–2074 [View Article][PubMed]
    [Google Scholar]
  12. Ishiwata K., Nakamura T., Shimada M., Makiguchi N. 1989; Enzymatic production of l-cysteine with tryptophan synthase of Escherichia coli. J Fermentation Bioeng 67:169–172 [View Article]
    [Google Scholar]
  13. Jagura-Burdzy G., Hulanicka D. 1981; Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon. J Bacteriol 147:744–751 [View Article][PubMed]
    [Google Scholar]
  14. Kredich N. M. 1992; The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6:2747–2753 [View Article][PubMed]
    [Google Scholar]
  15. Lochowska A., Iwanicka-Nowicka R., Plochocka D., Hryniewicz M. M. 2001; Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem 276:2098–2107 [View Article][PubMed]
    [Google Scholar]
  16. Miller J. H. 1972 Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Méndez J., Reimundo P., Pérez-Pascual D., Navais R., Gómez E., Guijarro J. A. 2011; A novel cdsAB operon is involved in the uptake of l-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol 193:944–951 [View Article][PubMed]
    [Google Scholar]
  18. Nakamori S., Kobayashi S. I., Kobayashi C., Takagi H. 1998; Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611[PubMed]
    [Google Scholar]
  19. Ogasawara H., Ishida Y., Yamada K., Yamamoto K., Ishihama A. 2007; PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol 189:5534–5541 [View Article][PubMed]
    [Google Scholar]
  20. Oguri T., Schneider B., Reitzer L. 2012; Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar Typhimurium. J Bacteriol 194:4366–4376 [View Article][PubMed]
    [Google Scholar]
  21. Saier M. H., Reddy V. S., Tamang D. G., Västermark A. 2014; The transporter classification database. Nucleic Acids Res 42:D251–D258 [View Article][PubMed]
    [Google Scholar]
  22. Shatalin K., Shatalina E., Mironov A., Nudler E. 2011; H2S: a universal defense against antibiotics in bacteria. Science 334:986–990 [View Article][PubMed]
    [Google Scholar]
  23. Shimada T., Fujita N., Maeda M., Ishihama A. 2005; Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10:907–918 [View Article][PubMed]
    [Google Scholar]
  24. Shimada T., Hirao K., Kori A., Yamamoto K., Ishihama A. 2007; RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. Mol Microbiol 66:744–757 [View Article][PubMed]
    [Google Scholar]
  25. Shimada T., Bridier A., Briandet R., Ishihama A. 2011a; Novel roles of LeuO in transcription regulation of E. coli: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 82:378–397 [View Article]
    [Google Scholar]
  26. Shimada T., Fujita N., Yamamoto K., Ishihama A. 2011b; Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6:e20081 [View Article]
    [Google Scholar]
  27. Shimada T., Yamamoto K., Ishihama A. 2011c; Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 193:649–659 [View Article]
    [Google Scholar]
  28. Shimada T., Yamazaki Y., Tanaka K., Ishihama A. 2014; The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One 9:e90447 [View Article][PubMed]
    [Google Scholar]
  29. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96 [View Article][PubMed]
    [Google Scholar]
  30. Snell E. E. 1975; Tryptophanase: structure, catalytic activities, and mechanism of action. Adv Enzymol Relat Areas Mol Biol 42:287–333[PubMed]
    [Google Scholar]
  31. Soutourina J., Blanquet S., Plateau P. 2001; Role of d-cysteine desulfhydrase in the adaptation of Escherichia coli to d-cysteine. J Biol Chem 276:40864–40872 [View Article][PubMed]
    [Google Scholar]
  32. Sørensen M. A., Pedersen S. 1991; Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246[PubMed]
    [Google Scholar]
  33. Takumi K., Nonaka G. 2016; Bacterial cysteine-inducible cysteine resistance systems. J Bacteriol 198:1384–1392 [View Article][PubMed]
    [Google Scholar]
  34. Tchong S. I., Xu H., White R. H. 2005; l-Cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of l-cysteine into pyruvate, ammonia, and sulfide. Biochemistry 44:1659–1670 [View Article][PubMed]
    [Google Scholar]
  35. Teramoto J., Yoshimura S. H., Takeyasu K., Ishihama A. 2010; A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res 38:3605–3618 [View Article][PubMed]
    [Google Scholar]
  36. van der Ploeg J. R., Iwanicka-Nowicka R., Kertesz M. A., Leisinger T., Hryniewicz M. M. 1997; Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179:7671–7678[PubMed]
    [Google Scholar]
  37. Yamanaka Y., Shimada T., Yamamoto K., Ishihama A. 2016; Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Microbiology 162:1253–1264 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000337
Loading
/content/journal/micro/10.1099/mic.0.000337
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error