1887

Abstract

The second messenger, bis-(3′,5′)-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host–pathogen interactions. Bioinformatics analyses predicted that , an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen encodes only a single diguanylate cyclase. One of the unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that expression altered colony morphology, motility and biofilm formation of PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography–mass spectrometry confirmed that expression increased cyclic di-GMP production in PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in expressing could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to growth, .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000339
2016-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1651.html?itemId=/content/journal/micro/10.1099/mic.0.000339&mimeType=html&fmt=ahah

References

  1. Abel S., Chien P., Wassmann P., Schirmer T., Kaever V., Laub M. T., Baker T. A., Jenal U. 2011; Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43:550–560 [View Article][PubMed]
    [Google Scholar]
  2. Bharati B. K., Sharma I. M., Kasetty S., Kumar M., Mukherjee R., Chatterji D. 2012; A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis . Microbiology 158:1415–1427 [View Article][PubMed]
    [Google Scholar]
  3. Borlee B. R., Goldman A. D., Murakami K., Samudrala R., Wozniak D. J., Parsek M. R. 2010; Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842 [View Article][PubMed]
    [Google Scholar]
  4. Chan C., Paul R., Samoray D., Amiot N. C., Giese B., Jenal U., Schirmer T. 2004; Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101:17084–17089 [View Article][PubMed]
    [Google Scholar]
  5. Choi K. H., Kumar A., Schweizer H. P. 2006; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397 [View Article][PubMed]
    [Google Scholar]
  6. Christen B., Christen M., Paul R., Schmid F., Folcher M., Jenoe P., Meuwly M., Jenal U. 2006; Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32015–32024 [View Article][PubMed]
    [Google Scholar]
  7. Cohen D., Mechold U., Nevenzal H., Yarmiyhu Y., Randall T. E., Bay D. C., Rich J. D., Parsek M. R., Kaever V. et al. 2015; Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 112:11359–11364 [View Article][PubMed]
    [Google Scholar]
  8. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C. et al. 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011 [View Article][PubMed]
    [Google Scholar]
  9. Darzins A. 1993; The Pilg gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator cheY . J Bacteriol 175:5934–5944[PubMed]
    [Google Scholar]
  10. Deng J., Bi L., Zhou L., Guo S. J., Fleming J., Jiang H.-W., Zhou Y., Gu J., Zhong Q. et al. 2014; Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep 9:2317–2329 [View Article][PubMed]
    [Google Scholar]
  11. Déziel E., Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57rp correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204 [View Article][PubMed]
    [Google Scholar]
  12. Di Tommaso P., Moretti S., Xenarios I., Orobitg M., Montanyola A., Chang J. M., Taly J. F., Notredame C. 2011; T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17 [View Article][PubMed]
    [Google Scholar]
  13. Flores-Valdez M. A., De Jesus Aceves-Sanchez M., Pedroza-Roldan C., Vega-Dominguez P. J., Prado-Montes De Oca E., Bravo-Madrigal J., Laval F., Daffe M., Koestler B. et al. 2015; The cyclic di-GMP phosphodiesterase gene Rv1357c/BCG1419c affects BCG pellicle production and in vivo maintenance. IUBMB Life 67:129–138 [CrossRef]
    [Google Scholar]
  14. Geluk A., van den Eeden S. J., Dijkman K., Wilson L., Kim H. J., Franken K. L., Spencer J. S., Pessolani M. C., Pereira G. M. et al. 2011; ML1419c Peptide immunization induces Mycobacterium leprae-specific HLA-A*0201-restricted CTL Vivo with potential to kill live mycobacteria. J Immunol 187:1393–1402 [View Article][PubMed]
    [Google Scholar]
  15. Gengenbacher M., Kaufmann S. H. 2012; Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36:514–532 [View Article][PubMed]
    [Google Scholar]
  16. Gupta K., Kumar P., Chatterji D. 2010; Identification, activity and disulfide connectivity of c-di-GMP regulating proteins in Mycobacterium tuberculosis . PLoS One 5:e15072 [View Article][PubMed]
    [Google Scholar]
  17. Gupta K. R., Kasetty S., Chatterji D. 2015; Novel functions of (p)PPGPP and cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of mycobacterium smegmatis . Appl Environ Microbiol 81:2571–2578 [View Article][PubMed]
    [Google Scholar]
  18. Hallberg Z. F., Wang X. C., Wright T. A., Nan B., Ad O., Yeo J., Hammond M. C. 2016; Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3′, 3′-cGAMP). Proc Natl Acad Sci U S A 113:1790–1795 [View Article][PubMed]
    [Google Scholar]
  19. Hengge R. 2009; Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273 [View Article][PubMed]
    [Google Scholar]
  20. Henry J. T., Crosson S. 2011; Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286 [View Article][PubMed]
    [Google Scholar]
  21. Hickman J. W., Tifrea D. F., Harwood C. S. 2005; A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci 102:14422–14427 [View Article]
    [Google Scholar]
  22. Hickman J. W., Harwood C. S. 2008; Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389 [View Article][PubMed]
    [Google Scholar]
  23. Hong Y., Zhou X., Fang H., Yu D., Li C., Sun B. 2013; Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis 93:625–634 [View Article][PubMed]
    [Google Scholar]
  24. Irie Y., Borlee B. R., O'Connor J. R., Hill P. J., Harwood C. S., Wozniak D. J., Parsek M. R. 2012; Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 109:20632–20636 [View Article][PubMed]
    [Google Scholar]
  25. Irie Y., Parsek M. R. 2014; LC/MS/MS-based quantitative assay for the secondary messenger molecule, c-di-GMP. Methods Mol Biol 1149:271–279 [View Article][PubMed]
    [Google Scholar]
  26. Karaolis D. K., Means T. K., Yang D., Takahashi M., Yoshimura T., Muraille E., Philpott D., Schroeder J. T., Hyodo M. et al. 2007; Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178:2171–2181 [View Article][PubMed]
    [Google Scholar]
  27. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  28. Kulasakara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M. et al. 2006; Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci 103:2839–2844 [View Article]
    [Google Scholar]
  29. Lee V. T., Matewish J. M., Kessler J. L., Hyodo M., Hayakawa Y., Lory S. 2007; A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484 [View Article][PubMed]
    [Google Scholar]
  30. Letunic I., Doerks T., Bork P. 2015; SMART: recent updates, new developments and status. Nucleic Acids Res 43:D257–D260 [CrossRef]
    [Google Scholar]
  31. Marchler-Bauer A., Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., Geer R. C., He J., Gwadz M. et al. 2015; CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222–D226 [View Article][PubMed]
    [Google Scholar]
  32. Merritt J. H., Brothers K. M., Kuchma S. L., O'Toole G. A. 2007; SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189:8154–8164 [View Article][PubMed]
    [Google Scholar]
  33. Mills E., Pultz I. S., Kulasekara H. D., Miller S. I. 2011; The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129 [View Article][PubMed]
    [Google Scholar]
  34. Monot M., Honoré N., Garnier T., Zidane N., Sherafi D., Paniz-Mondolfi A., Matsuoka M., Taylor G. M., Donoghue H. D. et al. 2009; Comparative genomic and phylogeographic analysis of Mycobacterium leprae . Nat Genet 41:1282–1289 [View Article][PubMed]
    [Google Scholar]
  35. Newman J. R., Fuqua C. 1999; Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203 [View Article][PubMed]
    [Google Scholar]
  36. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  37. O'Toole G. A. 2011; Microtiter dish biofilm formation assay. J Vis Expe2437 [View Article]
    [Google Scholar]
  38. Orr M. W., Donaldson G. P., Severin G. B., Wang J., Sintim H. O., Waters C. M., Lee V. T. 2015; Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112:E5048E5057 [View Article][PubMed]
    [Google Scholar]
  39. Reyrat J. M., Kahn D. 2001; Mycobacterium smegmatis: an absurd model for tuberculosis?. Trends Microbiol 9:472–473 [View Article][PubMed]
    [Google Scholar]
  40. Ridley D. S., Jopling W. H. 1966; Classification of leprosy according to immunity. Int J Lepr Other Mycobact Dis 34:255–273
    [Google Scholar]
  41. Römling U., Galperin M. Y., Gomelsky M. 2013; Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52 [View Article][PubMed]
    [Google Scholar]
  42. Ryan R. P., Fouhy Y., Lucey J. F., Crossman L. C., Spiro S., He Y. W., Zhang L. H., Heeb S., Cámara M. et al. 2006; Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717 [View Article][PubMed]
    [Google Scholar]
  43. Ryan R. P., Lucey J., O'Donovan K., McCarthy Y., Yang L., Tolker-Nielsen T., Dow J. M. 2009; HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa . Environ Microbiol 11:1126–1136 [View Article][PubMed]
    [Google Scholar]
  44. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M. 2005; Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798 [View Article][PubMed]
    [Google Scholar]
  45. Schmidt A. J., Ryjenkov D. A., Gomelsky M. 2005; The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781 [View Article][PubMed]
    [Google Scholar]
  46. Sharma I. M., Prakash S., Dhanaraman T., Chatterji D. 2014; Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis . Microbiology 160:2304–2318 [View Article]
    [Google Scholar]
  47. Simm R., Morr M., Kader A., Nimtz M., Römling U. 2004; GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134 [View Article]
    [Google Scholar]
  48. Singh A. K., Reyrat J. M. 2009; Laboratory maintenance of Mycobacterium smegmatis . Curr Protoc Microbiol Chapter 10 Unit10C 1
    [Google Scholar]
  49. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J. et al. 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [View Article][PubMed]
    [Google Scholar]
  50. Sompolinsky D., Lagziel A., Naveh D., Yankilevitz T. 1978; Mycobacterium haemophilum sp. nov., a new pathogen of humans. Int J Syst Evol Microbiol 28:67–75
    [Google Scholar]
  51. Sondermann H., Shikuma N. J., Yildiz F. H. 2012; You've come a long way: c-di-GMP signaling. Curr Opin Microbiol 15:140–146 [View Article][PubMed]
    [Google Scholar]
  52. Spencer J. S., Dockrell H. M., Kim H. J., Marques M. A., Williams D. L., Martins M. V., Martins M. L., Lima M. C., Sarno E. N. et al. 2005; Identification of specific proteins and peptides in Mycobacterium leprae suitable for the selective diagnosis of leprosy. J Immunol 175:7930–7938 [View Article][PubMed]
    [Google Scholar]
  53. Starkey M., Hickman J. H., Ma L., Zhang N., De Long S., Hinz A., Palacios S., Manoil C., Kirisits M. J. et al. 2009; Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503 [View Article][PubMed]
    [Google Scholar]
  54. Tufariello J. M., Kerantzas C. A., Vilchèze C., Calder R. B., Nordberg E. K., Fischer J. A., Hartman T. E., Yang E., Driscoll T. et al. 2015; The complete genome sequence of the emerging pathogen Mycobacterium haemophilum explains its unique culture requirements. MBio 6:e01313e01315 [View Article][PubMed]
    [Google Scholar]
  55. Ueda A., Wood T. K. 2009; Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483 [View Article][PubMed]
    [Google Scholar]
  56. WHO 2014; Weekly epidemiological record (WER). 89389–400
  57. Walker S. L., Lockwood D. N. 2007; Leprosy. Clin Dermatol 25:165–172 [View Article][PubMed]
    [Google Scholar]
  58. Wassmann P., Chan C., Paul R., Beck A., Heerklotz H., Jenal U., Schirmer T. 2007; Structure of BeF3-modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15:915–927 [View Article][PubMed]
    [Google Scholar]
  59. Williams D. L., Slayden R. A., Amin A., Martinez A. N., Pittman T. L., Mira A., Mitra A., Nagaraja V., Morrison N. E. et al. 2009; Implications of high level pseudogene transcription in Mycobacterium leprae . BMC Genomics 10:397 [View Article]
    [Google Scholar]
  60. Wolfgang M. C., Lee V. T., Gilmore M. E., Lory S. 2003; Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4:253–263 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000339
Loading
/content/journal/micro/10.1099/mic.0.000339
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error