1887

Abstract

To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene . This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of and . Effects on swimming motility and succinoglycan production were partially dependent on encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an -overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis cluster and , the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted -dependent gene regulation. binding of Clr-cAMP and Clr-cGMP to the promoter regions of , and required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N) G(G/A)(T/A)ACA. Furthermore, and promoters were activated by Clr-cAMP/cGMP in as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000356
2016-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1840.html?itemId=/content/journal/micro/10.1099/mic.0.000356&mimeType=html&fmt=ahah

References

  1. An S. Q., Chin K. H., Febrer M., McCarthy Y., Yang J. G., Liu C. L., Swarbreck D., Rogers J., Maxwell Dow J. et al. 2013; A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. EMBO J 32:2430–2438 [View Article][PubMed]
    [Google Scholar]
  2. Arce-Rodríguez A., Durante-Rodríguez G., Platero R., Krell T., Calles B., de Lorenzo V. 2012; The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol 14:702–713 [View Article][PubMed]
    [Google Scholar]
  3. Aung H. L., Berney M., Cook G. M. 2014; Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. J Bacteriol 196:3091–3097 [View Article][PubMed]
    [Google Scholar]
  4. Bahlawane C., McIntosh M., Krol E., Becker A. 2008; Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498–1509 [View Article][PubMed]
    [Google Scholar]
  5. Bettenbrock K., Sauter T., Jahreis K., Kremling A., Lengeler J. W., Gilles E. D. 2007; Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 189:6891–6900 [View Article][PubMed]
    [Google Scholar]
  6. Bringhurst R. M., Gage D. J. 2002; Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 184:5385–5392 [View Article][PubMed]
    [Google Scholar]
  7. Busby S., Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 [View Article][PubMed]
    [Google Scholar]
  8. Cadoret J. C., Rousseau B., Perewoska I., Sicora C., Cheregi O., Vass I., Houmard J. 2005; Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280:33935–33944 [View Article][PubMed]
    [Google Scholar]
  9. Carlyon R. E., Ryther J. L., VanYperen R. D., Griffitts J. S. 2010; FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti. Mol Microbiol 77:170–182 [View Article][PubMed]
    [Google Scholar]
  10. Charoenpanich P., Meyer S., Becker A., McIntosh M. 2013; Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195:3224–3236 [View Article][PubMed]
    [Google Scholar]
  11. Chen E. J., Fisher R. F., Perovich V. M., Sabio E. A., Long S. R. 2009; Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. J Bacteriol 191:6833–6842 [View Article][PubMed]
    [Google Scholar]
  12. Chen C. H., Lin N. T., Hsiao Y. M., Yang C. Y., Tseng Y. H. 2010; Two non-consensus Clp binding sites are involved in upregulation of the gum operon involved in xanthan polysaccharide synthesis in Xanthomonas campestris pv. campestris. Res Microbiol 161:583–589 [View Article][PubMed]
    [Google Scholar]
  13. Cuthbertson L., Mainprize I. L., Naismith J. H., Whitfield C. 2009; Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177 [View Article][PubMed]
    [Google Scholar]
  14. Dasgupta N., Ferrell E. P., Kanack K. J., West S. E., Ramphal R. 2002; fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is σ70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250 [View Article][PubMed]
    [Google Scholar]
  15. de Lucena D. K., Pühler A., Weidner S. 2010; The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 10:265 [View Article][PubMed]
    [Google Scholar]
  16. Dickstein R., Bisseling T., Reinhold V. N., Ausubel F. M. 1988; Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev 2:677–687 [View Article][PubMed]
    [Google Scholar]
  17. Domínguez-Ferreras A., Pérez-Arnedo R., Becker A., Olivares J., Soto M. J., Sanjuán J. 2006; Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625 [View Article][PubMed]
    [Google Scholar]
  18. Dondrup M., Albaum S. P., Griebel T., Henckel K., Jünemann S., Kahlke T., Kleindt C. K., Küster H., Linke B. et al. 2009; EMMA 2 – a MAGE-compliant system for the collaborative analysis and integration of microarray data. BMC Bioinformatics 10:50 [View Article][PubMed]
    [Google Scholar]
  19. Dsouza M., Larsen N., Overbeek R. 1997; Searching for patterns in genomic data. Trends Genet 13:497–498 [View Article][PubMed]
    [Google Scholar]
  20. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. et al. 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672 [View Article][PubMed]
    [Google Scholar]
  21. Garcia P. P., Bringhurst R. M., Arango Pinedo C., Gage D. J. 2010; Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 192:5725–5735 [View Article][PubMed]
    [Google Scholar]
  22. Glazebrook J., Walker G. C. 1989; A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672 [View Article][PubMed]
    [Google Scholar]
  23. Griffitts J. S., Carlyon R. E., Erickson J. H., Moulton J. L., Barnett M. J., Toman C. J., Long S. R. 2008; A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis. Mol Microbiol 69:479–490 [View Article][PubMed]
    [Google Scholar]
  24. Hellweg C., Pühler A., Weidner S. 2009; The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 9:37 [View Article][PubMed]
    [Google Scholar]
  25. Imashimizu M., Yoshimura H., Katoh H., Ehira S., Ohmori M. 2005; NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobacterium, Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 252:97–103 [View Article][PubMed]
    [Google Scholar]
  26. Inada T., Takahashi H., Mizuno T., Aiba H. 1996; Down regulation of cAMP production by cAMP receptor protein in Escherichia coli: an assessment of the contributions of transcriptional and posttranscriptional control of adenylate cyclase. Mol Gen Genet 253:198–204 [View Article][PubMed]
    [Google Scholar]
  27. Jones K. M., Kobayashi H., Davies B. W., Taga M. E., Walker G. C. 2007; How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633 [View Article][PubMed]
    [Google Scholar]
  28. Kasai T., Kouzuma A., Nojiri H., Watanabe K. 2015; Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol 15:68 [View Article][PubMed]
    [Google Scholar]
  29. Kimura Y., Mishima Y., Nakano H., Takegawa K. 2002; An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. J Bacteriol 184:3578–3585 [View Article][PubMed]
    [Google Scholar]
  30. Kohl T. A., Baumbach J., Jungwirth B., Pühler A., Tauch A. 2008; The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350 [View Article][PubMed]
    [Google Scholar]
  31. Krol E., Becker A. 2004; Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272:1–17 [View Article][PubMed]
    [Google Scholar]
  32. Krol E., Becker A. 2014; Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proc Natl Acad Sci U S A 111:10702–10707 [View Article][PubMed]
    [Google Scholar]
  33. Kutsukake K. 1997; Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol Gen Genet 254:440–448 [View Article][PubMed]
    [Google Scholar]
  34. Marden J. N., Dong Q., Roychowdhury S., Berleman J. E., Bauer C. E. 2011; Cyclic GMP controls Rhodospirillum centenum cyst development. Mol Microbiol 79:600–615 [View Article][PubMed]
    [Google Scholar]
  35. Mathieu-Demazière C., Poinsot V., Masson-Boivin C., Garnerone A. M., Batut J. 2013; Biochemical and functional characterization of SpdA, a 2′,3′cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. BMC Microbiol 13:268 [View Article][PubMed]
    [Google Scholar]
  36. McDonough K. A., Rodriguez A. 2011; The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10:27–38
    [Google Scholar]
  37. Nanchen A., Schicker A., Revelles O., Sauer U. 2008; Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. J Bacteriol 190:2323–2330 [View Article][PubMed]
    [Google Scholar]
  38. Ochoa De Alda J. A., Ajlani G., Houmard J. 2000; Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol 182:3839–3842 [View Article][PubMed]
    [Google Scholar]
  39. Pellock B. J., Cheng H. P., Walker G. C. 2000; Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318 [View Article][PubMed]
    [Google Scholar]
  40. Pinedo C. A., Gage D. J. 2009; HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. J Bacteriol 191:298–309 [View Article][PubMed]
    [Google Scholar]
  41. Pini F., De Nisco N. J., Ferri L., Penterman J., Fioravanti A., Brilli M., Mengoni A., Bazzicalupo M., Viollier P. H. et al. 2015; Cell cycle control by the master regulator CtrA in Sinorhizobium meliloti. PLoS Genet 11:e1005232 [View Article][PubMed]
    [Google Scholar]
  42. Redfield R. J., Cameron A. D., Qian Q., Hinds J., Ali T. R., Kroll J. S., Langford P. R. 2005; A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 347:735–747 [View Article][PubMed]
    [Google Scholar]
  43. Römling U., Galperin M. Y., Gomelsky M. 2013; Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52 [View Article][PubMed]
    [Google Scholar]
  44. Roychowdhury S., Dong Q., Bauer C. E. 2015; DNA-binding properties of a cGMP-binding CRP homologue that controls development of metabolically dormant cysts of Rhodospirillum centenum. Microbiology 161:2256–2264 [View Article]
    [Google Scholar]
  45. Ryu M. H., Youn H., Kang I. H., Gomelsky M. 2015; Identification of bacterial guanylate cyclases. Proteins 83:799–804 [View Article][PubMed]
    [Google Scholar]
  46. Sahonero-Canavesi D. X., Sohlenkamp C., Sandoval-Calderón M., Lamsa A., Pogliano K., López-Lara I. M., Geiger O. 2015; Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 17:3391–3406 [View Article][PubMed]
    [Google Scholar]
  47. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73 [View Article][PubMed]
    [Google Scholar]
  48. Schäper S., Krol E., Skotnicka D., Kaever V., Hilker R., Søgaard-Andersen L., Becker A. 2016; Cyclic di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 198:521–535 [View Article]
    [Google Scholar]
  49. Schlüter J. P., Reinkensmeier J., Barnett M. J., Lang C., Krol E., Giegerich R., Long S. R., Becker A. 2013; Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 14:156 [View Article][PubMed]
    [Google Scholar]
  50. Schwedock J. S., Liu C., Leyh T. S., Long S. R. 1994; Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol 176:7055–7064[PubMed]
    [Google Scholar]
  51. Seok S. H., Im H., Won H. S., Seo M. D., Lee Y. S., Yoon H. J., Cha M. J., Park J. Y., Lee B. J. 2014; Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. Acta Crystallog D Biol Crystallogr 70:1726–1742 [View Article]
    [Google Scholar]
  52. Serrania J., Vorhölter F. J., Niehaus K., Pühler A., Becker A. 2008; Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. J Biotechnol 135:309–317 [View Article][PubMed]
    [Google Scholar]
  53. Shimada T., Fujita N., Yamamoto K., Ishihama A. 2011; Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 6:e20081 [View Article][PubMed]
    [Google Scholar]
  54. Sourjik V., Muschler P., Scharf B., Schmitt R. 2000; VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182:782–788 [View Article][PubMed]
    [Google Scholar]
  55. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508[PubMed]
    [Google Scholar]
  56. Stella N. A., Kalivoda E. J., O'Dee D. M., Nau G. J., Shanks R. M. 2008; Catabolite repression control of flagellum production by Serratia marcescens. Res Microbiol 159:562–568 [View Article][PubMed]
    [Google Scholar]
  57. Tian C. F., Garnerone A. M., Mathieu-Demazière C., Masson-Boivin C., Batut J. 2012; Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis. Proc Natl Acad Sci U S A 109:6751–6756 [View Article][PubMed]
    [Google Scholar]
  58. Tsuzuki M., Moskvin O. V., Kuribayashi M., Sato K., Retamal S., Abo M., Zeilstra-Ryalls J., Gomelsky M. 2011; Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77:7551–7559 [View Article][PubMed]
    [Google Scholar]
  59. Won H. S., Lee T. W., Park S. H., Lee B. J. 2002; Stoichiometry and structural effect of the cyclic nucleotide binding to cyclic AMP receptor protein. J Biol Chem 277:11450–11455 [View Article][PubMed]
    [Google Scholar]
  60. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15 [View Article][PubMed]
    [Google Scholar]
  61. Yao S. Y., Luo L., Har K. J., Becker A., Rüberg S., Yu G. Q., Zhu J. B., Cheng H. P. 2004; Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 186:6042–6049 [View Article][PubMed]
    [Google Scholar]
  62. Zheng D., Constantinidou C., Hobman J. L., Minchin S. D. 2004; Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000356
Loading
/content/journal/micro/10.1099/mic.0.000356
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error