Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium Gallegos-Monterrosa, Ramses and Mhatre, Eisha and Kovács, Ákos T.,, 162, 1922-1932 (2016), doi = https://doi.org/10.1099/mic.0.000371, publicationName = Microbiology Society, issn = 1350-0872, abstract= Bacillus subtilis is an intensively studied Gram-positive bacterium that has become one of the models for biofilm development. B. subtilis 168 is a well-known domesticated strain that has been suggested to be deficient in robust biofilm formation. Moreover, the diversity of available B. subtilis laboratory strains and their derivatives have made it difficult to compare independent studies related to biofilm formation. Here, we analysed numerous 168 stocks from multiple laboratories for their ability to develop biofilms in different set-ups and media. We report a wide variation among the biofilm-forming capabilities of diverse stocks of B. subtilis 168, both in architecturally complex colonies and liquid–air interface pellicles, as well as during plant root colonization. Some 168 variants are indeed unable to develop robust biofilm structures, while others do so as efficiently as the non-domesticated NCIB 3610 strain. In all cases studied, the addition of glucose to the medium dramatically improved biofilm development of the laboratory strains. Furthermore, the expression of biofilm matrix component operons, epsA-O and tapA-sipW-tasA, was monitored during colony biofilm formation. We found a lack of direct correlation between the expression of these genes and the complexity of wrinkles in colony biofilms. However, the presence of a single mutation in the exopolysaccharide-related gene epsC correlates with the ability of the stocks tested to form architecturally complex colonies and pellicles, and to colonize plant roots., language=, type=