The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation Lee, Dong-Seok and Kim, Younhee and Lee, Heung-Shick,, 163, 131-143 (2017), doi = https://doi.org/10.1099/mic.0.000399, publicationName = Microbiology Society, issn = 1350-0872, abstract= In this study, we analysed the whcD gene from Corynebacteriumglutamicum, which encodes a homologue of whiB, a Streptomycescoelicolor gene required for the sporulation of aerial hyphae. Deletion of the gene (ΔwhcD) severely affected cell growth in C. glutamicum. The ΔwhcD strain exhibited a large filamentous, branched and bud-shaped morphology with multiple septa. The transcription levels of the cell division genes involved in Z-ring assembly and septal peptidoglycan synthesis, including ftsZ, sepF, ftsQ and ftsI, were markedly decreased in the ΔwhcD strain. The divIVA gene, which is responsible for apical growth, also showed decreased transcription in the ΔwhcD strain. However, genes involved in the later stages of cell division, such as cell separation and chromosome segregation, did not show notable changes in their transcription levels. Moreover, the mutant strain was susceptible to inhibitors of transpeptidation, including penicillin and vancomycin. In addition, the transcription of genes fas-IA, fas-IB and accD1, which participate in the synthesis of fatty acid and cell envelope component mycolic acid, was altered in the ΔwhcD strain. This increased the cell surface hydrophobicity in the mutant strain, apparently leading to cell aggregation in liquid media. These findings indicate that whcD is a whiB-like gene with roles in the early stages of cell division and fatty acid synthesis, and the pleiotropic phenotypes of the ΔwhcD strain suggest that whcD may be a global regulatory gene., language=, type=