RT Journal Article SR Electronic(1) A1 Tunchai, Mattana A1 Hida, Akiko A1 Oku, Shota A1 Nakashimada, Yutaka A1 Tajima, Takahisa A1 Kato, JunichiYR 2017 T1 Identification and characterization of chemosensors for d-malate, unnatural enantiomer of malate, in Ralstonia pseudosolanacearum JF Microbiology, VO 163 IS 2 SP 233 OP 242 DO https://doi.org/10.1099/mic.0.000408 PB Microbiology Society, SN 1465-2080, AB Ralstonia pseudosolanacearum Ps29 is attracted by nonmetabolizable d-malate, an unnatural enantiomer. Screening of a complete collection of single-mcp-gene deletion mutants of Ps29 revealed that the RSc1156 homologue is a chemosensor for d-malate. An RSc1156 homologue deletion mutant of Ps29 showed decreased but significant responses to d-malate, suggesting the existence of another d-malate chemosensor. McpM previously had been identified as a chemosensor for l-malate. We constructed an RSc1156 homologue mcpM double deletion mutant and noted that this mutant failed to respond to d-malate; thus, the RSc1156 homologue and McpM are the major chemosensors for d-malate in this organism. To further characterize the ligand specificities of the RSc1156 homologue and McpM, we constructed a Ps29 derivative (designated K18) harbouring deletions in 18 individual mcp genes, including mcpM and RSc1156. K18 harbouring the RSc1156 homologue responded strongly to l-tartrate and d-malate and moderately to d-tartrate, but not to l-malate or succinate. K18 harbouring mcpM responded strongly to l-malate and d-tartrate and moderately to succinate, fumarate and d-malate. Ps29 utilizes l-malate and l-tartrate, but not d-malate. We therefore concluded that l-tartrate and l-malate are natural ligands of the RSc1156 homologue and McpM, respectively, and that chemotaxis toward d-malate is a fortuitous response by the RSc1156 homologue and McpM in Ps29. We propose re-designation of the RSc1156 homologue as McpT. In tomato plant infection assays, the mcpT deletion mutant of highly virulent R. pseudosolanacearum MAFF106611 was as infectious as wild-type MAFF106611, suggesting that McpT-mediated chemotaxis does not play an important role in tomato plant infection., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000408