1887

Abstract

Bacteria initiate translation using a modified amino acid, -formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the gene that eliminate the formylation of Met-tRNA render PDF dispensable. The extent to which the emergence of bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an null mutation in the model organism . An null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000413
2017-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/185.html?itemId=/content/journal/micro/10.1099/mic.0.000413&mimeType=html&fmt=ahah

References

  1. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014; 12:35–48 [View Article][PubMed]
    [Google Scholar]
  2. Arenz S, Wilson DN. blast from the past: reassessing forgotten translation inhibitors, antibiotic selectivity, and resistance mechanisms to aid drug development. Mol Cell 2016; 61:3–14 [View Article][PubMed]
    [Google Scholar]
  3. Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D et al. Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Proc Natl Acad Sci USA 2006; 103:39–44 [View Article][PubMed]
    [Google Scholar]
  4. Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341–4367 [View Article][PubMed]
    [Google Scholar]
  5. Sandikci A, Gloge F, Martinez M, Mayer MP, Wade R et al. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat Struct Mol Biol 2013; 20:843–850 [View Article][PubMed]
    [Google Scholar]
  6. Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 1989; 86:8247–8251[PubMed] [CrossRef]
    [Google Scholar]
  7. Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G et al. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 2000; 39:1256–1262[PubMed] [CrossRef]
    [Google Scholar]
  8. Olaleye OA, Bishai WR, Liu JO. Targeting the role of N-terminal methionine processing enzymes in Mycobacterium tuberculosis. Tuberculosis 2009; 89:S55–S59 [View Article][PubMed]
    [Google Scholar]
  9. Sharma A, Khuller GK, Sharma S. Peptide deformylase – a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin Ther Targets 2009; 13:753–765 [View Article][PubMed]
    [Google Scholar]
  10. Helgren TR, Wangtrakuldee P, Staker BL, Hagen TJ. Advances in bacterial methionine aminopeptidase inhibition. Curr Top Med Chem 2016; 16:397–414[PubMed] [CrossRef]
    [Google Scholar]
  11. Leeds JA, Dean CR. Peptide deformylase as an antibacterial target: a critical assessment. Curr Opin Pharmacol 2006; 6:445–452 [View Article][PubMed]
    [Google Scholar]
  12. Piatkov KI, Vu TT, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microb Cell 2015; 2:376–393 [View Article][PubMed]
    [Google Scholar]
  13. Haas M, Beyer D, Gahlmann R, Freiberg C. YkrB is the main peptide deformylase in Bacillus subtilis, a eubacterium containing two functional peptide deformylases. Microbiology 2001; 147:1783–1791 [View Article][PubMed]
    [Google Scholar]
  14. You C, Lu H, Sekowska A, Fang G, Wang Y et al. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis. BMC Microbiol 2005; 5:57 [View Article][PubMed]
    [Google Scholar]
  15. Min S, Ingraham K, Huang J, McCloskey L, Rilling S et al. Frequency of spontaneous resistance to peptide deformylase inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:4644–4652 [View Article][PubMed]
    [Google Scholar]
  16. Dean CR, Narayan S, Richards J, Daigle DM, Esterow S et al. Reduced susceptibility of Haemophilus influenzae to the peptide deformylase inhibitor LBM415 can result from target protein overexpression due to amplified chromosomal def gene copy number. Antimicrob Agents Chemother 2007; 51:1004–1010 [View Article][PubMed]
    [Google Scholar]
  17. Caughlan RE, Sriram S, Daigle DM, Woods AL, Buco J et al. Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression. Antimicrob Agents Chemother 2009; 53:5015–5021 [View Article][PubMed]
    [Google Scholar]
  18. Duroc Y, Giglione C, Meinnel T. Mutations in three distinct loci cause resistance to peptide deformylase inhibitors in Bacillus subtilis. Antimicrob Agents Chemother 2009; 53:1673–1678 [View Article][PubMed]
    [Google Scholar]
  19. Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D et al. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob Agents Chemother 2000; 44:1825–1831[PubMed] [CrossRef]
    [Google Scholar]
  20. Hinttala R, Sasarman F, Nishimura T, Antonicka H, Brunel-Guitton C et al. An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase. Hum Mol Genet 2015; 24:4103–4113 [View Article][PubMed]
    [Google Scholar]
  21. Sinha A, Köhrer C, Weber MH, Masuda I, Mootha VK et al. Biochemical characterization of pathogenic mutations in human mitochondrial methionyl-tRNA formyltransferase. J Biol Chem 2014; 289:32729–32741 [View Article][PubMed]
    [Google Scholar]
  22. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 2011; 14:428–434 [View Article][PubMed]
    [Google Scholar]
  23. Newton DT, Creuzenet C, Mangroo D. Formylation is not essential for initiation of protein synthesis in all eubacteria. J Biol Chem 1999; 274:22143–22146[PubMed] [CrossRef]
    [Google Scholar]
  24. Guillon JM, Mechulam Y, Schmitter JM, Blanquet S, Fayat G. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J Bacteriol 1992; 174:4294–4301[PubMed] [CrossRef]
    [Google Scholar]
  25. Lewandowski T, Huang J, Fan F, Rogers S, Gentry D et al. Staphylococcus aureus formyl-methionyl transferase mutants demonstrate reduced virulence factor production and pathogenicity. Antimicrob Agents Chemother 2013; 57:2929–2936 [View Article][PubMed]
    [Google Scholar]
  26. Zorzet A, Andersen JM, Nilsson AI, Møller NF, Andersson DI. Compensatory mutations in agrC partly restore fitness in vitro to peptide deformylase inhibitor-resistant Staphylococcus aureus. J Antimicrob Chemother 2012; 67:1835–1842 [View Article][PubMed]
    [Google Scholar]
  27. McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R. Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 2011; 193:2027–2034 [View Article][PubMed]
    [Google Scholar]
  28. Guan G, Pinochet-Barros A, Gaballa A, Patel SJ, Argüello JM et al. PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication. Mol Microbiol 2015; 98:787–803 [View Article][PubMed]
    [Google Scholar]
  29. Harwood CR, Cutting SM. (editors) Molecular Biological Methods for Bacillus Chichester: John Wiley and Sons; 1990
    [Google Scholar]
  30. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 2003; 50:1591–1604[PubMed] [CrossRef]
    [Google Scholar]
  31. Quisel JD, Burkholder WF, Grossman AD. In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis. J Bacteriol 2001; 183:6573–6578 [View Article][PubMed]
    [Google Scholar]
  32. Mascher T, Hachmann AB, Helmann JD. Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors. J Bacteriol 2007; 189:6919–6927 [View Article][PubMed]
    [Google Scholar]
  33. Kearns DB, Losick R. Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 2003; 49:581–590[PubMed] [CrossRef]
    [Google Scholar]
  34. Morales-Soto N, Anyan ME, Mattingly AE, Madukoma CS, Harvey CW et al. Preparation, imaging, and quantification of bacterial surface motility assays. J Vis Exp 2015; 98:
    [Google Scholar]
  35. Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 2001; 98:11621–11626 [View Article][PubMed]
    [Google Scholar]
  36. Sterlini JM, Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 1969; 113:29–37[PubMed] [CrossRef]
    [Google Scholar]
  37. Sharp MD, Pogliano K. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci USA 1999; 96:14553–14558[PubMed] [CrossRef]
    [Google Scholar]
  38. Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91–210 [View Article][PubMed]
    [Google Scholar]
  39. Zuber P. Management of oxidative stress in Bacillus. Annu Rev Microbiol 2009; 63:575–597 [View Article][PubMed]
    [Google Scholar]
  40. Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 2001; 183:7173–7181 [View Article][PubMed]
    [Google Scholar]
  41. Bsat N, Chen L, Helmann JD. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 1996; 178:6579–6586[PubMed] [CrossRef]
    [Google Scholar]
  42. Chandrangsu P, Dusi R, Hamilton CJ, Helmann JD. Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways. Mol Microbiol 2014; 91:706–715 [View Article][PubMed]
    [Google Scholar]
  43. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443–454 [View Article][PubMed]
    [Google Scholar]
  44. Faulkner MJ, Helmann JD. Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 2011; 15:175–189 [View Article][PubMed]
    [Google Scholar]
  45. Martin JE, Waters LS, Storz G, Imlay JA. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 2015; 11:e1004977 [View Article][PubMed]
    [Google Scholar]
  46. Yeowell HN, White JR. Iron requirement in the bactericidal mechanism of streptonigrin. Antimicrob Agents Chemother 1982; 22:961–968[PubMed] [CrossRef]
    [Google Scholar]
  47. Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD. Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 2006; 188:3664–3673 [View Article][PubMed]
    [Google Scholar]
  48. Boorsma A, van der Rest ME, Lolkema JS, Konings WN. Secondary transporters for citrate and the Mg2+-citrate complex in Bacillus subtilis are homologous proteins. J Bacteriol 1996; 178:6216–6222[PubMed] [CrossRef]
    [Google Scholar]
  49. Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD. FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 2001; 183:2380–2383 [View Article][PubMed]
    [Google Scholar]
  50. Gaballa A, Newton GL, Antelmann H, Parsonage D, Upton H et al. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci USA 2010; 107:6482–6486 [View Article][PubMed]
    [Google Scholar]
  51. Lamers AP, Keithly ME, Kim K, Cook PD, Stec DF et al. Synthesis of bacillithiol and the catalytic selectivity of FosB-type fosfomycin resistance proteins. Org Lett 2012; 14:5207–5209 [View Article][PubMed]
    [Google Scholar]
  52. Kovács ÁT. Bacterial differentiation via gradual activation of global regulators. Curr Genet 2016; 62:125–128 [View Article][PubMed]
    [Google Scholar]
  53. Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010; 8:634–644 [View Article][PubMed]
    [Google Scholar]
  54. Kearns DB, Chu F, Rudner R, Losick R. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 2004; 52:357–369 [View Article][PubMed]
    [Google Scholar]
  55. Cairns LS, Hobley L, Stanley-Wall NR. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 2014; 93:587–598 [View Article][PubMed]
    [Google Scholar]
  56. Mielich-Süss B, Lopez D. Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 2015; 17:555–565 [View Article][PubMed]
    [Google Scholar]
  57. Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep 2014; 6:212–225 [CrossRef]
    [Google Scholar]
  58. Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 2003; 1:117–126 [View Article][PubMed]
    [Google Scholar]
  59. Margolis P, Hackbarth C, Lopez S, Maniar M, Wang W et al. Resistance of Streptococcus pneumoniae to deformylase inhibitors is due to mutations in defB. Antimicrob Agents Chemother 2001; 45:2432–2435[PubMed] [CrossRef]
    [Google Scholar]
  60. Nilsson AI, Zorzet A, Kanth A, Dahlström S, Berg OG et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc Natl Acad Sci USA 2006; 103:6976–6981 [View Article][PubMed]
    [Google Scholar]
  61. Zorzet A, Pavlov MY, Nilsson AI, Ehrenberg M, Andersson DI. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Mol Microbiol 2010; 75:1299–1313 [View Article][PubMed]
    [Google Scholar]
  62. Mader D, Liebeke M, Winstel V, Methling K, Leibig M et al. Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus. BMC Microbiol 2013; 13:7 [View Article][PubMed]
    [Google Scholar]
  63. Plikat U, Voshol H, Dangendorf Y, Wiedmann B, Devay P et al. From proteomics to systems biology of bacterial pathogens: approaches, tools, and applications. Proteomics 2007; 7:992–1003 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000413
Loading
/content/journal/micro/10.1099/mic.0.000413
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error