1887

Abstract

The EepR transcription factor positively regulates secondary metabolites and tissue-damaging metalloproteases. To gain insight into mechanisms by which EepR regulates pigment and co-regulated factors, genetic suppressor analysis was performed. Suppressor mutations that restored pigment to the non-pigmented ∆ mutant mapped to the ORF. Mutation of also restored haemolysis, swarming motility and protease production to the mutant. HexS is a known direct and negative regulator of secondary metabolites in and is a LysR family regulator and an orthologue of LrhA. Here, we demonstrate that HexS directly controls and the serralysin gene . EepR was shown to directly regulate expression but indirectly regulate expression. Together, these data indicate that EepR and HexS oppose each other in controlling stationary phase-associated molecules and enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000422
2017-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/280.html?itemId=/content/journal/micro/10.1099/mic.0.000422&mimeType=html&fmt=ahah

References

  1. Williamson NR, Simonsen HT, Harris AK, Leeper FJ, Salmond GP. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin. J Ind Microbiol Biotechnol 2006; 33:151–158 [View Article][PubMed]
    [Google Scholar]
  2. Kalivoda EJ, Stella NA, Aston MA, Fender JE, Thompson PP et al. Cyclic AMP negatively regulates prodigiosin production by Serratia marcescens. Res Microbiol 2010; 161:158–167 [View Article][PubMed]
    [Google Scholar]
  3. Shanks RM, Lahr RM, Stella NA, Arena KE, Brothers KM et al. A Serratia marcescens PigP homolog controls prodigiosin biosynthesis, swarming motility and hemolysis and is regulated by cAMP-CRP and HexS. PLoS One 2013; 8:e57634 [View Article][PubMed]
    [Google Scholar]
  4. Tanikawa T, Nakagawa Y, Matsuyama T. Transcriptional downregulator hexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 2006; 50:587–596 [View Article][PubMed]
    [Google Scholar]
  5. Horng YT, Chang KC, Liu YN, Lai HC, Soo PC. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens. Int J Med Microbiol 2010; 300:304–312 [View Article][PubMed]
    [Google Scholar]
  6. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR et al. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 2002; 45:1655–1671[PubMed] [CrossRef]
    [Google Scholar]
  7. Brothers KM, Stella NA, Romanowski EG, Kowalski RP, Shanks RM. EepR mediates secreted-protein production, desiccation survival, and proliferation in a corneal infection model. Infect Immun 2015; 83:4373–4382 [View Article][PubMed]
    [Google Scholar]
  8. Stella NA, Lahr RM, Brothers KM, Kalivoda EJ, Hunt KM et al. Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites. J Bacteriol 2015; 197:2468–2478 [View Article][PubMed]
    [Google Scholar]
  9. Coulthurst SJ, Williamson NR, Harris AK, Spring DR, Salmond GP. Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology 2006; 152:1899–1911 [View Article][PubMed]
    [Google Scholar]
  10. Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2013; 15:372–385 [View Article][PubMed]
    [Google Scholar]
  11. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951; 62:293–300[PubMed]
    [Google Scholar]
  12. Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 2004; 186:595–600[PubMed] [CrossRef]
    [Google Scholar]
  13. Shanks RM, Stella NA, Kalivoda EJ, Doe MR, O'Dee DM et al. A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. J Bacteriol 2007; 189:7262–7272 [View Article][PubMed]
    [Google Scholar]
  14. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005; 55:368–380 [View Article][PubMed]
    [Google Scholar]
  15. Chiang SL, Rubin EJ. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 2002; 296:179–185[PubMed] [CrossRef]
    [Google Scholar]
  16. O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB et al. Genetic approaches to study of biofilms. Methods Enzymol 1999; 310:91–109[PubMed] [CrossRef]
    [Google Scholar]
  17. Stella NA, Fender JE, Lahr RM, Kalivoda EJ, Shanks RM. The LysR transcription factor, HexS, is required for glucose inhibition of prodigiosin production by Serratia marcescens. Adv Microbiol 2012; 2:511–517 [CrossRef]
    [Google Scholar]
  18. Shanks RM, Kadouri DE, Maceachran DP, O'Toole GA. New yeast recombineering tools for bacteria. Plasmid 2009; 62:88–97 [View Article][PubMed]
    [Google Scholar]
  19. Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988; 170:2575[PubMed] [CrossRef]
    [Google Scholar]
  20. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 2006; 72:5027–5036 [View Article][PubMed]
    [Google Scholar]
  21. Shanks RM, Stella NA, Lahr RM, Wang S, Veverka TI et al. Serratamolide is a hemolytic factor produced by Serratia marcescens. PLoS One 2012; 7:e36398 [View Article][PubMed]
    [Google Scholar]
  22. Griffith KL, Wolf RE. Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 2002; 290:397–402 [View Article][PubMed]
    [Google Scholar]
  23. Stella NA, Kalivoda EJ, O'Dee DM, Nau GJ, Shanks RM. Catabolite repression control of flagellum production by Serratia marcescens. Res Microbiol 2008; 159:562–568 [View Article][PubMed]
    [Google Scholar]
  24. Gibson KE, Silhavy TJ. The LysR homolog LrhA promotes RpoS degradation by modulating activity of the response regulator sprE. J Bacteriol 1999; 181:563–571[PubMed]
    [Google Scholar]
  25. Castillo A, Reverchon S. Characterization of the pecT control region from Erwinia chrysanthemi 3937. J Bacteriol 1997; 179:4909–4918[PubMed] [CrossRef]
    [Google Scholar]
  26. Fineran PC, Slater H, Everson L, Hughes K, Salmond GP. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 2005; 56:1495–1517 [View Article][PubMed]
    [Google Scholar]
  27. Harris SJ, Shih YL, Bentley SD, Salmond GP. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol Microbiol 1998; 28:705–717[PubMed] [CrossRef]
    [Google Scholar]
  28. Heroven AK, Dersch P. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 2006; 62:1469–1483 [View Article][PubMed]
    [Google Scholar]
  29. Surgey N, Robert-Baudouy J, Condemine G. The Erwinia chrysanthemi pecT gene regulates pectinase gene expression. J Bacteriol 1996; 178:1593–1599[PubMed] [CrossRef]
    [Google Scholar]
  30. Green JA, Rappoport DA, Williams RP. Studies on pigmentation of Serratia marcescens. II. Characterization of the blue and the combined red pigments of prodigiosin. J Bacteriol 1956; 72:483–487[PubMed]
    [Google Scholar]
  31. Fender JE, Bender CM, Stella NA, Lahr RM, Kalivoda EJ et al. Serratia marcescens quinoprotein glucose dehydrogenase activity mediates medium acidification and inhibition of prodigiosin production by glucose. Appl Environ Microbiol 2012; 78:6225–6235 [View Article][PubMed]
    [Google Scholar]
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  33. Lee C, Park C. Mutations upregulating the flhDC operon of Escherichia coli K-12. J Microbiol 2013; 51:140–144 [View Article][PubMed]
    [Google Scholar]
  34. Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF et al. LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 2002; 45:521–532[PubMed] [CrossRef]
    [Google Scholar]
  35. Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987 [View Article][PubMed]
    [Google Scholar]
  36. Givskov M, Eberl L, Christiansen G, Benedik MJ, Molin S. Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol Microbiol 1995; 15:445–454[PubMed] [CrossRef]
    [Google Scholar]
  37. Hampton HG, Mcneil MB, Paterson TJ, Ney B, Williamson NR et al. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. Microbiology 2016; 162:1047–1058 [View Article][PubMed]
    [Google Scholar]
  38. Matsuyama T, Bhasin A, Harshey RM. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 1995; 177:987–991 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000422
Loading
/content/journal/micro/10.1099/mic.0.000422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error