RT Journal Article SR Electronic(1) A1 Amoozegar, Mohammad Ali A1 Siroosi, Maryam A1 Atashgahi, Siavash A1 Smidt, Hauke A1 Ventosa, AntonioYR 2017 T1 Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes JF Microbiology, VO 163 IS 5 SP 623 OP 645 DO https://doi.org/10.1099/mic.0.000463 PB Microbiology Society, SN 1465-2080, AB Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000463