1887

Abstract

Responses to the interspecies quorum-sensing signal autoinducer-2 (AI-2) regulate the patterns of gene expression that promote biofilm development. also senses AI-2 as a chemoattractant, a response that requires the periplasmic AI-2-binding protein LsrB and the chemoreceptor Tsr. Here, we confirm, as previously observed, that under static conditions highly motile cells self-aggregate and form surface-adherent structures more readily than cells lacking LsrB and Tsr, or than Δ cells unable to produce AI-2. This difference is observed both at 37 and 30 °C. Cells deleted for the genes encoding the operon repressor (Δ), or the AI-2 kinase (Δ), or an AI-2 uptake channel protein (Δ), or an AI-2 metabolism enzyme (Δ) are also defective in biofilm formation. The Δ and Δ cells are totally defective in AI-2 chemotaxis, whereas the other mutants show normal or near-normal chemotaxis to external gradients of AI-2. These data demonstrate that chemotaxis to external AI-2 is necessary but not sufficient to induce the full range of density-dependent behaviours that are required for optimal biofilm formation. We also demonstrate that, compared to other binding-protein-dependent chemotaxis systems in , low levels (on the order of ~250 molecules of periplasmic LsrB per wild-type cell and as low as ~50 molecules per cell in some mutants) are adequate for a strong chemotaxis response to external gradients of AI-2.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000567
2017-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1778.html?itemId=/content/journal/micro/10.1099/mic.0.000567&mimeType=html&fmt=ahah

References

  1. Costerton JW. Overview of microbial biofilms. J Ind Microbiol 1995; 15:137–140 [View Article][PubMed]
    [Google Scholar]
  2. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002; 8:881–890 [View Article][PubMed]
    [Google Scholar]
  3. Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64:847–867 [View Article][PubMed]
    [Google Scholar]
  4. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95–108 [View Article][PubMed]
    [Google Scholar]
  5. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167–193 [View Article][PubMed]
    [Google Scholar]
  6. Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR. A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 2013; 90:6 [View Article][PubMed]
    [Google Scholar]
  7. Belas R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 2014; 22:517–527 [View Article][PubMed]
    [Google Scholar]
  8. O'Toole GA, Wong GC. Sensational biofilms: surface sensing in bacteria. Curr Opin Microbiol 2016; 30:139–146 [View Article][PubMed]
    [Google Scholar]
  9. Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013; 37:849–871 [View Article][PubMed]
    [Google Scholar]
  10. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30:285–293 [View Article][PubMed]
    [Google Scholar]
  11. Genevaux P, Muller S, Bauda P. A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 1996; 142:27–30 [View Article][PubMed]
    [Google Scholar]
  12. Wood TK, González Barrios AF, Herzberg M, Lee J. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:361–367 [View Article][PubMed]
    [Google Scholar]
  13. Vigeant MA, Ford RM, Wagner M, Tamm LK. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol 2002; 68:2794–2801 [View Article][PubMed]
    [Google Scholar]
  14. Wood TK. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 2009; 11:1–15 [View Article][PubMed]
    [Google Scholar]
  15. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310–347 [View Article][PubMed]
    [Google Scholar]
  16. Kendall MM, Sperandio V. Cell-to-cell signaling in Escherichia coli and Salmonella. EcoSal Plus 2014; 6: [View Article][PubMed]
    [Google Scholar]
  17. Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 2005; 13:27–33 [View Article][PubMed]
    [Google Scholar]
  18. Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2013; 37:156–181 [View Article][PubMed]
    [Google Scholar]
  19. Marques JC, Oh IK, Ly DC, Lamosa P, Ventura MR et al. LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2. Proc Natl Acad Sci USA 2014; 111:14235–14240 [View Article][PubMed]
    [Google Scholar]
  20. Marques JC, Lamosa P, Russell C, Ventura R, Maycock C et al. Processing the interspecies quorum-sensing signal autoinducer-2 (AI-2): characterization of phospho-(S)-4,5-dihydroxy-2,3-pentanedione isomerization by LsrG protein. J Biol Chem 2011; 286:18331 [View Article][PubMed]
    [Google Scholar]
  21. Xavier KB, Bassler BL. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 2005; 187:238–248 [View Article][PubMed]
    [Google Scholar]
  22. Li J, Attila C, Wang L, Wood TK, Valdes JJ et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 2007; 189:6011–6020 [View Article][PubMed]
    [Google Scholar]
  23. Bansal T, Jesudhasan P, Pillai S, Wood TK, Jayaraman A. Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2. Appl Microbiol Biotechnol 2008; 78:811–819 [View Article][PubMed]
    [Google Scholar]
  24. Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al. Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 2011; 193:768–773 [View Article][PubMed]
    [Google Scholar]
  25. Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 2016; 7:12984 [View Article][PubMed]
    [Google Scholar]
  26. Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM et al. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 2011; 157:2445–2455 [View Article][PubMed]
    [Google Scholar]
  27. Anderson JK, Huang JY, Wreden C, Sweeney EG, Goers J et al. Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal. MBio 2015; 6:e00379-15 [View Article][PubMed]
    [Google Scholar]
  28. Parkinson JS, Houts SE. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol 1982; 151:106[PubMed]
    [Google Scholar]
  29. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008 [View Article][PubMed]
    [Google Scholar]
  30. Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 2007; Chapter 1:17 [View Article][PubMed]
    [Google Scholar]
  31. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  32. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 2010; 77:1367–1379 [View Article][PubMed]
    [Google Scholar]
  33. Hansen MC, Palmer RJ, Udsen C, White DC, Molin S. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 2001; 147:1383–1391 [View Article][PubMed]
    [Google Scholar]
  34. Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 2006; 188:3572–3581 [View Article][PubMed]
    [Google Scholar]
  35. Ascenso OS, Marques JC, Santos AR, Xavier KB, Ventura MR et al. An efficient synthesis of the precursor of AI-2, the signalling molecule for inter-species quorum sensing. Bioorg Med Chem 2011; 19:1236–1241 [View Article][PubMed]
    [Google Scholar]
  36. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 2005; Chapter 1:Unit 1B.1 [View Article][PubMed]
    [Google Scholar]
  37. Taga ME. Methods for analysis of bacterial autoinducer-2 production. Curr Protoc Microbiol 2005; Chapter 1:Unit 1C.1 [View Article][PubMed]
    [Google Scholar]
  38. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 1973; 74:77–91 [View Article][PubMed]
    [Google Scholar]
  39. Neu HC, Heppel LA. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 1965; 240:3685[PubMed]
    [Google Scholar]
  40. Nossal NG, Heppel LA. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 1966; 241:3055[PubMed]
    [Google Scholar]
  41. Manns JM. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins. Curr Protoc Microbiol 2011; 22:A.3M.1
    [Google Scholar]
  42. González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 2006; 188:305–316 [View Article][PubMed]
    [Google Scholar]
  43. Niu C, Robbins CM, Pittman KJ, Osborn Jl, Stubblefield BA et al. LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities. FEMS Microbiol Ecol 2013; 83:778–791 [View Article][PubMed]
    [Google Scholar]
  44. Taga ME, Xavier KB. Methods for analysis of bacterial autoinducer-2 production. Curr Protoc Microbiol 2011; Chapter 1:Unit 1C.1 [View Article][PubMed]
    [Google Scholar]
  45. Turovskiy Y, Chikindas ML. Autoinducer-2 bioassay is a qualitative, not quantitative method influenced by glucose. J Microbiol Methods 2006; 66:497–503 [View Article][PubMed]
    [Google Scholar]
  46. Park S, Wolanin PM, Yuzbashyan EA, Silberzan P, Stock JB et al. Motion to form a quorum. Science 2003; 301:188 [View Article][PubMed]
    [Google Scholar]
  47. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 2005; 3:383–396 [View Article][PubMed]
    [Google Scholar]
  48. Wang L, Li J, March JC, Valdes JJ, Bentley WE. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 2005; 187:8350–8360 [View Article][PubMed]
    [Google Scholar]
  49. Gao M, Zheng H, Ren Y, Lou R, Wu F et al. A crucial role for spatial distribution in bacterial quorum sensing. Sci Rep 2016; 6:34695 [View Article][PubMed]
    [Google Scholar]
  50. Alexandre G. Chemotaxis control of transient cell aggregation. J Bacteriol 2015; 197:3230–3237 [View Article][PubMed]
    [Google Scholar]
  51. Sourjik V, Wingreen NS. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 2012; 24:262–268 [View Article][PubMed]
    [Google Scholar]
  52. Wadhams GH, Armitage JP. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 2004; 5:1024–1037 [View Article][PubMed]
    [Google Scholar]
  53. Hazelbauer GL. Maltose chemoreceptor of Escherichia coli. J Bacteriol 1975; 122:206[PubMed]
    [Google Scholar]
  54. Manson MD, Boos W, Bassford PJ, Rasmussen BA. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem 1985; 260:9727[PubMed]
    [Google Scholar]
  55. Kalinin Y, Neumann S, Sourjik V, Wu M. Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio. J Bacteriol 2010; 192:1796–1800 [View Article][PubMed]
    [Google Scholar]
  56. Li M, Hazelbauer GL. Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol 2004; 186:3687–3694 [View Article][PubMed]
    [Google Scholar]
  57. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 2004; 15:677–687 [View Article][PubMed]
    [Google Scholar]
  58. Long T, Tu KC, Wang Y, Mehta P, Ong NP et al. Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol 2009; 7:e1000068 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000567
Loading
/content/journal/micro/10.1099/mic.0.000567
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error