1887

Abstract

The opportunistic pathogen can metabolize carnitine and -acylcarnitines, which are abundant in host muscle and other tissues. Acylcarnitines are metabolized to carnitine and a fatty acid. The liberated carnitine and its catabolic product, glycine betaine, can be used as osmoprotectants, to induce the secreted phospholipase C PlcH, and as sole carbon, nitrogen and energy sources. is incapable of synthesis of carnitine and acylcarnitines, therefore they must be imported from an exogenous source. In this study, we present the first characterization of bacterial acylcarnitine transport. Short-chain acylcarnitines are imported by the ABC transporter CaiX-CbcWV. Medium- and long-chain acylcarnitines (MCACs and LCACs) are hydrolysed extracytoplasmically and the free carnitine is transported primarily through CaiX-CbcWV. These findings suggest that the periplasmic protein CaiX has a binding pocket that permits short acyl chains on its carnitine ligand and that there are one or more secreted hydrolases that cleave MCACs and LCACs. To identify the secreted hydrolase(s), we used a saturating genetic screen and transcriptomics followed by phenotypic analyses, but neither led to identification of a contributing hydrolase, supporting but not conclusively demonstrating redundancy for this activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000638
2018-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/635.html?itemId=/content/journal/micro/10.1099/mic.0.000638&mimeType=html&fmt=ahah

References

  1. Warren CR. Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 2013; 198:476–485 [View Article][PubMed]
    [Google Scholar]
  2. Warren CR. High diversity of small organic N observed in soil water. Soil Biol Biochem 2013; 57:444–450 [View Article]
    [Google Scholar]
  3. Panter RA, Mudd JB. Carnitine levels in some higher plants. FEBS Lett 1969; 5:169–170 [View Article][PubMed]
    [Google Scholar]
  4. Fraenkel G. Effect and distribution of vitamin BT. Arch Biochem Biophys 1951; 34:457–467 [View Article][PubMed]
    [Google Scholar]
  5. Bieber LL. Carnitine. Annu Rev Biochem 1988; 57:261–283 [View Article][PubMed]
    [Google Scholar]
  6. Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr 1991; 121:539–546 [View Article][PubMed]
    [Google Scholar]
  7. Rebouche CJ, Seim H. Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 1998; 18:39–61 [View Article][PubMed]
    [Google Scholar]
  8. Lindstedt G, Lindstedt S, Midtvedt T, Tofft M. The formation and degradation of carnitine in Pseudomonas. Biochemistry 1967; 6:1262–1270 [View Article]
    [Google Scholar]
  9. Meadows JA, Wargo MJ. Characterization of Pseudomonas aeruginosa growth on O-acylcarnitines and identification of a short-chain acylcarnitine hydrolase. Appl Environ Microbiol 2013; 79:3355–3363 [View Article][PubMed]
    [Google Scholar]
  10. Lucchesi GI, Lisa TA, Casale CH, Domenech CE. Carnitine resembles choline in the induction of cholinesterase, acid phosphatase, and phospholipase C and in its action as an osmoprotectant in Pseudomonas aeruginosa. Curr Microbiol 1995; 30:55–60 [View Article][PubMed]
    [Google Scholar]
  11. D'Souza-Ault MR, Smith LT, Smith GM. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 1993; 59:473–478[PubMed]
    [Google Scholar]
  12. Uanschou C, Frieht R, Pittner F. What to learn from a comparative genomic sequence analysis of L-carnitine dehydrogenase. Monatshefte für Chemie 2005; 136:1365–1381 [View Article]
    [Google Scholar]
  13. Kleber HP, Aurich H. Damped oscillations in the synthesis of carnitine dehydrogenase by Pseudomonas aeruginosa. Hoppe Seylers Z Physiol Chem 1967; 348:1727–1729[PubMed]
    [Google Scholar]
  14. Kang Y, Nguyen DT, Son MS, Hoang TT. The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 2008; 154:1584–1598 [View Article][PubMed]
    [Google Scholar]
  15. Meadows JA, Wargo MJ. Carnitine in bacterial physiology and metabolism. Microbiology 2015; 161:1161–1174 [View Article][PubMed]
    [Google Scholar]
  16. Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 2010; 78:13–34 [View Article][PubMed]
    [Google Scholar]
  17. Linton KJ. Structure and function of ABC transporters. Physiology 2007; 22:122–130 [View Article][PubMed]
    [Google Scholar]
  18. Chen C, Malek AA, Wargo MJ, Hogan DA, Beattie GA. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 2010; 75:29–45 [View Article][PubMed]
    [Google Scholar]
  19. Wargo MJ, Hogan DA. Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 2009; 155:2411–2419 [View Article][PubMed]
    [Google Scholar]
  20. Malek AA, Chen C, Wargo MJ, Beattie GA, Hogan DA. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism. J Bacteriol 2011; 193:3033–3041 [View Article][PubMed]
    [Google Scholar]
  21. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974; 119:736–747[PubMed]
    [Google Scholar]
  22. Labauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol 2012; Chapter 6:Unit6E 1 [View Article][PubMed]
    [Google Scholar]
  23. Meadows JA, Wargo MJ. Transcriptional regulation of carnitine catabolism in Pseudomonas aeruginosa by CdhR. mSphere 2018; 3:e00480-17 [View Article][PubMed]
    [Google Scholar]
  24. Miller JH. Experiments in Molecular Genetics Cold Spring, NY: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  25. Dietrich LE, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008; 321:1203–1206 [View Article][PubMed]
    [Google Scholar]
  26. Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ et al. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 2013; 4:e00526-12 [View Article][PubMed]
    [Google Scholar]
  27. Wargo MJ, Ho TC, Gross MJ, Whittaker LA, Hogan DA. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites. Infect Immun 2009; 77:1103–1111 [View Article][PubMed]
    [Google Scholar]
  28. Willsey GG, Wargo MJ. Sarcosine catabolism in Pseudomonas aeruginosa is transcriptionally regulated by SouR. J Bacteriol 2015; 198:301–310 [View Article][PubMed]
    [Google Scholar]
  29. Simon R, Priefer U, Pühler A. A Broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1983; 1:784–791 [View Article]
    [Google Scholar]
  30. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005; 55:368–380 [View Article][PubMed]
    [Google Scholar]
  31. MacEachran DP, Ye S, Bomberger JM, Hogan DA, Swiatecka-Urban A et al. The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun 2007; 75:3902–3912 [View Article][PubMed]
    [Google Scholar]
  32. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 2006; 72:5027–5036 [View Article][PubMed]
    [Google Scholar]
  33. Steiber A, Kerner J, Hoppel CL. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 2004; 25:455–473 [View Article][PubMed]
    [Google Scholar]
  34. Bourdin B, Adenier H, Perrin Y. Carnitine is associated with fatty acid metabolism in plants. Plant Physiol Biochem 2007; 45:926–931 [View Article][PubMed]
    [Google Scholar]
  35. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 2006; 103:2833–2838 [View Article][PubMed]
    [Google Scholar]
  36. Bahl CD, Maceachran DP, O'Toole GA, Madden DR. Purification, crystallization and preliminary X-ray diffraction analysis of Cif, a virulence factor secreted by Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:26–28 [View Article][PubMed]
    [Google Scholar]
  37. Sage AE, Vasil ML. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol 1997; 179:4874–4881 [View Article][PubMed]
    [Google Scholar]
  38. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet 2014; 10:e1004518 [View Article][PubMed]
    [Google Scholar]
  39. Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 2007; 75:5313–5324 [View Article][PubMed]
    [Google Scholar]
  40. Du Y, Shi WW, He YX, Yang YH, Zhou CZ et al. Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem J 2011; 436:283–289 [View Article][PubMed]
    [Google Scholar]
  41. Kappes RM, Bremer E. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. Microbiology 1998; 144:83–90 [View Article]
    [Google Scholar]
  42. Trakhanov S, Vyas NK, Luecke H, Kristensen DM, Ma J et al. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry 2005; 44:6597–6608 [View Article][PubMed]
    [Google Scholar]
  43. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B. A structural classification of substrate-binding proteins. FEBS Lett 2010; 584:2606–2617 [View Article][PubMed]
    [Google Scholar]
  44. Hampel KJ, Labauve AE, Meadows JA, Fitzsimmons LF, Nock AM et al. Characterization of the GbdR regulon in Pseudomonas aeruginosa. J Bacteriol 2014; 196:7–15 [View Article][PubMed]
    [Google Scholar]
  45. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010; 85:1629–1642 [View Article][PubMed]
    [Google Scholar]
  46. Skřivanová E, Hovorková P, Čermák L, Marounek M. Potential use of caprylic acid in broiler chickens: effect on Salmonella enteritidis. Foodborne Pathog Dis 2015; 12:62–67 [View Article][PubMed]
    [Google Scholar]
  47. Baskaran SA, Bhattaram V, Upadhyaya I, Upadhyay A, Kollanoor-Johny A et al. Inactivation of Escherichia coli O157:H7 on cattle hides by caprylic acid and β-resorcylic acid. J Food Prot 2013; 76:318–322 [View Article][PubMed]
    [Google Scholar]
  48. Rosenblatt J, Reitzel RA, Raad I. Caprylic acid and glyceryl trinitrate combination for eradication of biofilm. Antimicrob Agents Chemother 2015; 59:1786–1788 [View Article][PubMed]
    [Google Scholar]
  49. Nakai SA, Siebert KJ. Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiol 2004; 21:67–72 [View Article]
    [Google Scholar]
  50. Osborn MJ, Wu HC. Proteins of the outer membrane of gram-negative bacteria. Annu Rev Microbiol 1980; 34:369–422 [View Article][PubMed]
    [Google Scholar]
  51. Hvorecny KL, Dolben E, Moreau-Marquis S, Hampton TH, Shabaneh TB et al. An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. Am J Physiol Lung Cell Mol Physiol 2018; 314:L150–L156 [View Article][PubMed]
    [Google Scholar]
  52. Bahl CD, Hvorecny KL, Morisseau C, Gerber SA, Madden DR. Visualizing the mechanism of epoxide hydrolysis by the bacterial virulence enzyme Cif. Biochemistry 2016; 55:788–797 [View Article][PubMed]
    [Google Scholar]
  53. Black PN. Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport. J Bacteriol 1991; 173:435–442 [View Article][PubMed]
    [Google Scholar]
  54. Krol E, Becker A. Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proc Natl Acad Sci USA 2014; 111:10702–10707 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000638
Loading
/content/journal/micro/10.1099/mic.0.000638
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error