1887

Abstract

is a fungicolous species which produces rich secondary metabolites. However, no genetic transformation method is available for further studies. Here, we developed a marker-less transformation system based on the complementation of an uridine/uracil biosynthetic gene by protoplast transformation. An uridine/uracil auxotrophic mutant of Δ was obtained by using a positive screening protocol with 5′-fluoroorotic acid as a selective reagent. To improve the homologous integration rates, the orthologues of and which play critical roles in non-homologous end-joining recombination were disrupted. The resulting mutant showed remarkable transformation rates of 89 %, while no change was found in the deletion mutant compared with the WT strain. This suggests that play a key role in the non-homologous recombination in this strain. Using this system, the biosynthetic gene cluster of trichothecene () harzianum B was identified by deletion of the in . Comparative genome analysis revealed that the trichothecene biosynthetic gene cluster in shared similar organizations with and , even though their encoded products are different in structures. Taken together, the highly efficient genetic system provides a convenient tool for studying the biosynthetic diversity and mining the novel natural product from the fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000649
2018-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/769.html?itemId=/content/journal/micro/10.1099/mic.0.000649&mimeType=html&fmt=ahah

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79:629–661 [View Article][PubMed]
    [Google Scholar]
  2. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol 2013; 11:21–32 [View Article][PubMed]
    [Google Scholar]
  3. Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y et al. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans . ACS Synth Biol 2013; 2:629–634 [View Article][PubMed]
    [Google Scholar]
  4. Wu G, Zhou H, Zhang P, Wang X, Li W et al. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett 2016; 18:1832–1835 [View Article][PubMed]
    [Google Scholar]
  5. Zhang P, Wang X, Fan A, Zheng Y, Liu X et al. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici . Mol Microbiol 2017; 105:469–483 [View Article][PubMed]
    [Google Scholar]
  6. Fan A, Mi W, Liu Z, Zeng G, Zhang P et al. Deletion of a histone acetyltransferase leads to the pleiotropic activation of natural products in Metarhizium robertsii . Org Lett 2017; 19:1686–1689 [View Article][PubMed]
    [Google Scholar]
  7. Zheng Y, Wang X, Zhang X, Li W, Liu G et al. COP9 signalosome subunit PfCsnE regulates secondary metabolism and conidial formation in Pestalotiopsis fici . Sci China Life Sci 2017; 60:656–664 [View Article][PubMed]
    [Google Scholar]
  8. Zheng Y, Ma K, Lyu H, Huang Y, Liu H et al. Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici . Org Lett 2017; 19:4700–4703 [View Article][PubMed]
    [Google Scholar]
  9. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma . Phytochem Rev 2008; 7:89–123 [View Article]
    [Google Scholar]
  10. Hill R, Cutler H, Parker S. Trichoderma and metabolites as biological control agents; 1995 The Horticulture and Food Research Institute Of New Zealand, USA patent WO1995NZ00009
  11. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A et al. Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride . J Agric Food Chem 2003; 51:6957–6960 [View Article][PubMed]
    [Google Scholar]
  12. Kishimoto N, Sugihara S, Mochida KYO, Fujita T. In vitro antifungal and antiviral activities of γ -and δ-lactone analogs utilized as food flavoring. Biocontrol Sci 2005; 10:31–36 [View Article]
    [Google Scholar]
  13. Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ et al. Bioactive carotanes from Trichoderma virens . J Nat Prod 2000; 63:1197–1200[PubMed] [Crossref]
    [Google Scholar]
  14. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ et al. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 2008; 72:80–86 [View Article]
    [Google Scholar]
  15. Ilmén M, Saloheimo A, Onnela ML, Penttilä ME. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei . Appl Environ Microbiol 1997; 63:1298–1306[PubMed]
    [Google Scholar]
  16. Sun J, Pei Y, Li E, Li W, Hyde KD et al. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci Rep 2016; 6:37369–37379 [View Article][PubMed]
    [Google Scholar]
  17. Li J, Ren J, Bao L, Jin T, Wang W et al. Trichodermates A–F, new cytotoxic trichothecenes from the plant pathogenic fungus Trichoderma sp. Helv Chim Acta 2016; 99:63–69 [View Article]
    [Google Scholar]
  18. McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins 2011; 3:802–814 [View Article][PubMed]
    [Google Scholar]
  19. Derntl C, Kiesenhofer DP, Mach RL, Mach-Aigner AR. Novel strategies for genomic manipulation of Trichoderma reesei with the purpose of strain engineering. Appl Environ Microbiol 2015; 81:6314–6323 [View Article][PubMed]
    [Google Scholar]
  20. Ying SH, Feng MG, Keyhani NO. Use of uridine auxotrophy (ura3) for markerless transformation of the mycoinsecticide Beauveria bassiana . Appl Microbiol Biotechnol 2013; 97:3017–3025 [View Article][PubMed]
    [Google Scholar]
  21. Ballance DJ, Turner G. Development of a high-frequency transforming vector for Aspergillus nidulans . Gene 1985; 36:321–331 [View Article][PubMed]
    [Google Scholar]
  22. van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CA. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 1987; 206:71–75 [View Article][PubMed]
    [Google Scholar]
  23. Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 2004; 101:12248–12253 [View Article][PubMed]
    [Google Scholar]
  24. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora . Proc Natl Acad Sci USA 2006; 103:14871–14876 [View Article][PubMed]
    [Google Scholar]
  25. Qin X, Li R, Luo X, Lin Y, Feng JX. Deletion of ligD significantly improves gene targeting frequency in the lignocellulolytic filamentous fungus Penicillium oxalicum . Fungal Biol 2017; 121:615–623 [View Article][PubMed]
    [Google Scholar]
  26. Bok JW, Keller NP. Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. Methods Mol Biol 2012; 944:163–174 [View Article][PubMed]
    [Google Scholar]
  27. Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y et al. Fusion PCR and gene targeting in Aspergillus nidulans . Nat Protoc 2006; 1:3111–3120 [View Article][PubMed]
    [Google Scholar]
  28. Wang X, Wu F, Liu L, Liu X, Che Y et al. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici . Fungal Genet Biol 2015; 81:221–228 [View Article][PubMed]
    [Google Scholar]
  29. Yelton MM, Hamer JE, Timberlake WE. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 1984; 81:1470–1474 [View Article][PubMed]
    [Google Scholar]
  30. Wilson TE, Grawunder U, Lieber MR. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 1997; 388:495–498 [View Article][PubMed]
    [Google Scholar]
  31. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H et al. A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae . Fungal Genet Biol 2008; 45:878–889 [View Article][PubMed]
    [Google Scholar]
  32. Kito H, Fujikawa T, Moriwaki A, Tomono A, Izawa M et al. MgLig4, a homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, non-homologous end-joining events in Magnaporthe grisea . Fungal Genet Biol 2008; 45:1543–1551 [View Article][PubMed]
    [Google Scholar]
  33. Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A et al. Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei . Fungal Genet Biol 2012; 49:772–778 [View Article][PubMed]
    [Google Scholar]
  34. Malmierca MG, Barua J, McCormick SP, Izquierdo-Bueno I, Cardoza RE et al. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environ Microbiol 2015; 17:1103–1118 [View Article][PubMed]
    [Google Scholar]
  35. Nielsen KF, Gräfenhan T, Zafari D, Thrane U. Trichothecene production by Trichoderma brevicompactum . J Agric Food Chem 2005; 53:8190–8196 [View Article][PubMed]
    [Google Scholar]
  36. Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma–a genomic perspective. Microbiology 2012; 158:35–45 [View Article][PubMed]
    [Google Scholar]
  37. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era. Annu Rev Phytopathol 2013; 51:105–129 [View Article][PubMed]
    [Google Scholar]
  38. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM et al. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011; 9:749–759 [View Article][PubMed]
    [Google Scholar]
  39. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004; 2:43–56 [View Article][PubMed]
    [Google Scholar]
  40. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei . Gene 1987; 61:155–164 [View Article][PubMed]
    [Google Scholar]
  41. Zhong YH, Wang XL, Wang TH, Jiang Q. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 2007; 73:1348–1354 [View Article][PubMed]
    [Google Scholar]
  42. Zeilinger S. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 2004; 45:54–60 [View Article][PubMed]
    [Google Scholar]
  43. Mitra G, Bachhawat BK. Enhanced in vivo catalytic activity of PEG-modified cellulase complex from Trichoderma reesei . Biochem Mol Biol Int 1997; 42:93–102 [View Article][PubMed]
    [Google Scholar]
  44. Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 2010; 86:51–62 [View Article][PubMed]
    [Google Scholar]
  45. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L et al. A versatile and efficient gene-targeting system for Aspergillus nidulans . Genetics 2006; 172:1557–1566 [View Article][PubMed]
    [Google Scholar]
  46. Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci 1998; 23:394–398 [View Article][PubMed]
    [Google Scholar]
  47. Alexander NJ, Proctor RH, McCormick SP. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium . Toxin Rev 2009; 28:198–215 [View Article]
    [Google Scholar]
  48. Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP et al. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma . Appl Environ Microbiol 2011; 77:4867–4877 [View Article][PubMed]
    [Google Scholar]
  49. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG et al. Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum . Fungal Genet Biol 2013; 53:22–33 [View Article][PubMed]
    [Google Scholar]
  50. Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD. Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 2004; 41:454–462 [View Article][PubMed]
    [Google Scholar]
  51. Yin WB, Baccile JA, Bok JW, Chen Y, Keller NP et al. A nonribosomal peptide synthetase-derived iron(III) complex from the pathogenic fungus Aspergillus fumigatus . J Am Chem Soc 2013; 135:2064–2067 [View Article][PubMed]
    [Google Scholar]
  52. Alexander NJ, Hohn TM, McCormick SP. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol 1998; 64:221–225[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000649
Loading
/content/journal/micro/10.1099/mic.0.000649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error